Confinement to sub-partial fields

Stefan van Zwam
Based on joint work with Rudi Pendavingh

July 17, 2008
Minors of matrices

Let A be an $X \times Y$ matrix. A *minor* of A is a matrix obtained by

- Scaling rows and columns;
- Deleting rows and columns (notation: $A - x$);
- Pivoting on a nonzero entry:

$$A = \begin{bmatrix} x' \mid c & D \end{bmatrix} \rightarrow \begin{bmatrix} x' \mid -a^{-1}c & D - a^{-1}cb \end{bmatrix} = A^{xy}$$
Minors of matrices

Let A be an $X \times Y$ matrix. A minor of A is a matrix obtained by

- Scaling rows and columns;
- Deleting rows and columns (notation: $A - x$);
- Pivoting on a nonzero entry:

$$
A = \begin{bmatrix}
\alpha & b \\
\gamma & \gamma'
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\alpha^{-1} & \alpha^{-1}b \\
-\alpha^{-1}c & D - \alpha^{-1}cb
\end{bmatrix} = A^{xy}.
$$

Correspond with minors of matroid $M([I|A])$.

$$
\begin{bmatrix}
1 & 0 \\
\vdots & A \\
0 & 1
\end{bmatrix}
\leftrightarrow
\begin{bmatrix}
A
\end{bmatrix}
$$
A partial field \mathbb{P} is a pair (\mathbb{O}, \mathbb{G}) of a ring and a group, such that

$$-1 \in \mathbb{G} \subseteq \mathbb{O}^*.$$

Elements of \mathbb{P} are elements of $\mathbb{G} \cup \{0\}$.

A matrix A over \mathbb{O} is a \mathbb{P}-matrix if $\det(B) \in \mathbb{P}$ for all square submatrices of A.
Let $P_1 := (\emptyset_1, G_1)$ and $P_2 := (\emptyset_2, G_2)$.

- $\varphi : P_1 \rightarrow P_2$ is homomorphism if
 - $\varphi(1) = 1$
 - $\varphi(pq) = \varphi(p)\varphi(q)$
 - If $p + q \in P$ then $\varphi(p) + \varphi(q) = \varphi(p + q)$

Example: ring homomorphism with $\varphi(G_1) \subseteq G_2$.

- $M(A) = M(\varphi(A))$
• If \(P_1 = (\Omega_1, G_1) \) and \(P_2 = (\Omega_2, G_2) \) then

\[
P_1 \otimes P_2 := (\Omega_1 \times \Omega_2, G_1 \times G_2).
\]

addition, multiplication componentwise.
• If $P_1 = (\mathcal{O}_1, G_1)$ and $P_2 = (\mathcal{O}_2, G_2)$ then

$$P_1 \otimes P_2 := (\mathcal{O}_1 \times \mathcal{O}_2, G_1 \times G_2).$$

addition, multiplication componentwise.

• If $M = M([I|A_1]) = M([I|A_2])$, then

$$M = M([I|A_1 \otimes A_2]).$$
• If $P_1 = (\mathcal{O}_1, G_1)$ and $P_2 = (\mathcal{O}_2, G_2)$ then

 $P_1 \otimes P_2 := (\mathcal{O}_1 \times \mathcal{O}_2, G_1 \times G_2)$.

 addition, multiplication componentwise.

• If $M = M([I|A_1]) = M([I|A_2])$, then

 $M = M([I|A_1 \otimes A_2])$.

\[
\begin{pmatrix}
1 & 1 \\
1 & \rho_1
\end{pmatrix} \otimes \begin{pmatrix}
1 & 1 \\
1 & \rho_2
\end{pmatrix} = \begin{pmatrix}
(1, 1) & (1, 1) \\
(1, 1) & (\rho_1, \rho_2)
\end{pmatrix}
\]
Theorem 1 (Tutte 1965). Let M be a matroid. The following are equivalent:

- M is representable over $\text{GF}(2)$ and $\text{GF}(3)$
- M is representable over \mathbb{R} by a totally unimodular matrix
- M is representable over every field
Theorem 1 (Tutte 1965). Let \(M \) be a matroid. The following are equivalent:

- \(M \) is representable over \(GF(2) \) and \(GF(3) \)
- \(M \) is representable over \(\mathbb{R} \) by a totally unimodular matrix
- \(M \) is representable over every field

Proof. Consider partial field \(GF(2) \otimes GF(3) \). Elements are \((0, 0), (1, 1), (1, -1) \). Find bijective homomorphism

\[\varphi : GF(2) \otimes GF(3) \to (\mathbb{Z}, \{-1, 1\}) . \]
Theorem 1’ (Tutte 1965). Let M be a matroid. The following are equivalent:

- M is representable over $\text{GF}(2)$ and field not of characteristic 2
- M is representable over \mathbb{R} by a totally unimodular matrix
Theorem 1’ (Tutte 1965). Let M be a matroid. The following are equivalent:

- M is representable over $\text{GF}(2)$ and field not of characteristic 2
- M is representable over \mathbb{R} by a totally unimodular matrix

Proof. Consider partial field $\text{GF}(2) \otimes F$. Elements are $(0, 0)$ and $(1, x)$ where $x \in F^*$. Then ...

Problem: $\text{GF}(2) \otimes F$ is too big!
Definition 2. *Fundamental elements of \mathbb{P}*

\[\mathcal{F}(\mathbb{P}) := \{ p \in \mathbb{P} \mid 1 - p \in \mathbb{P} \}. \]

Theorem 3. *M is \mathbb{P}-representable $\iff M$ is $\mathbb{P}[\mathcal{F}(\mathbb{P})]$-representable.*
Theorem 1’ (Tutte 1965). Let M be a matroid. The following are equivalent:

- M is representable over $\text{GF}(2)$ and field not of characteristic 2
- M is representable over \mathbb{R} by a totally unimodular matrix

Proof. Consider partial field $\text{GF}(2) \otimes F$. Elements are $(0, 0)$ and $(1, x)$ where $x \in F^*$. Then ...

$$F(P) = \{(0,0), (1,1)\} \cup \{ (1, x) \mid (1)-(1, x) \in P \}$$

$$P[F(P)] = \{(0,0), (1,1), (1, -1)\}$$, hom. \(\square\)
Theorem 4. $\mathcal{P}' \subseteq \mathcal{P}$ induced. B 3-connected scaled \mathcal{P}'-matrix. A 3-connected \mathcal{P}-matrix with submatrix B. Exactly one of these is true:

(i) A is a scaled \mathcal{P}'-matrix;
Theorem 4. $P' \subseteq P$ induced. B 3-connected scaled P'-matrix. A 3-connected P-matrix with submatrix B. Exactly one of these is true:

(i) A is a scaled P'-matrix;

(ii) A has 3-connected $X \times Y$-minor A' such that

 • A' is not a scaled P'-matrix.
Theorem 4. \(P' \subseteq P \) induced. \(B \) 3-connected scaled \(P' \)-matrix. A 3-connected \(P \)-matrix with submatrix \(B \). Exactly one of these is true:

(i) \(A \) is a scaled \(P' \)-matrix;

(ii) \(A \) has 3-connected \(X \times Y \)-minor \(A' \) such that

- \(A' \) is not a scaled \(P' \)-matrix.
- \(B \) is isomorphic to \(A' - U \), with \(|U \cap X| \leq 1, |U \cap Y| \leq 1| \).
Theorem 4. \(P' \subseteq P \) induced. \(B \) 3-connected scaled \(P' \)-matrix. A 3-connected \(P \)-matrix with submatrix \(B \). Exactly one of these is true:

(i) \(A \) is a scaled \(P' \)-matrix;

(ii) \(A \) has 3-connected \(X \times Y \)-minor \(A' \) such that

- \(A' \) is not a scaled \(P' \)-matrix.
- \(B \) is isomorphic to \(A' - U \), with \(|U \cap X| \leq 1, |U \cap Y| \leq 1 \);
- If \(B \) is isomorphic to \(A' - \{x, y\} \) then at least one of \(A' - x, A' - y \) is 3-connected.
Stabilizer Theorem

Matroid N stabilizes M over \mathbb{P} if the representation of N determines uniquely that of M.
Matroid N stabilizes M over \mathbb{P} if the representation of N determines uniquely that of M.

Theorem 5 (Stabilizer Theorem, Whittle 1999). M, N 3-connected \mathbb{P}-representable matroids, $N \preceq M$. Exactly one of the following is true:

(i) N stabilizes M;
Matroid N stabilizes M over \mathbb{P} if the representation of N determines uniquely that of M.

Theorem 5 (Stabilizer Theorem, Whittle 1999). M, N 3-connected \mathbb{P}-representable matroids, $N \preceq M$. Exactly one of the following is true:

(i) N stabilizes M;

(ii) M has 3-connected minor M' such that

- N does not stabilize M'.

Matroid N stabilizes M over \mathbb{P} if the representation of N determines uniquely that of M.

Theorem 5 (Stabilizer Theorem, Whittle 1999). M, N 3-connected \mathbb{P}-representable matroids, $N \preceq M$. Exactly one of the following is true:

(i) N stabilizes M;

(ii) M has 3-connected minor M' such that

- N does not stabilize M';
- N is isomorphic to $M'\backslash x$, $M'\backslash y$, or $M'\backslash x\backslash y$;
Matroid N stabilizes M over \mathcal{P} if the representation of N determines uniquely that of M.

Theorem 5 (Stabilizer Theorem, Whittle 1999). M, N 3-connected \mathcal{P}-representable matroids, $N \preceq M$. Exactly one of the following is true:

(i) N stabilizes M;

(ii) M has 3-connected minor M' such that

- N does not stabilize M';
- N is isomorphic to $M'/x, M'\setminus y$, or $M'/x\setminus y$;
- If $N \cong M'/x\setminus y$ then one of $M'/x, M'\setminus y$ is 3-connected.
Stabilizer Theorem

Matroid N stabilizes M over \mathcal{P} if the representation of N determines uniquely that of M.

Corollary 5 (Stabilizer Theorem, Whittle 1999). M, N 3-connected \mathcal{P}-representable matroids, $N \preceq M$. Exactly one of the following is true:

(i) N stabilizes M;

(ii) M has 3-connected minor M' such that

- N does not stabilize M';
- N is isomorphic to $M'/x, M'\backslash y$, or $M'/x\backslash y$;
- If $N \cong M'/x\backslash y$ then one of $M'/x, M'\backslash y$ is 3-connected.
Corollary 5. M, N 3-connected \mathcal{P}-representable matroids, $N \preceq M$. Exactly one of the following is true:

(i) N stabilizes M;

(ii) M has 3-connected minor M' such that

- N does not stabilize M';
- N is isomorphic to $M'/x, M'/\backslash y$, or $M'/x\backslash y$;
- $N \cong M'/x\backslash y \Rightarrow M'/x$ or $M'/\backslash y$ is 3-connected.

Proof: Def. $P_0 := P \otimes P$, $P'_0 := \{(x, x) | x \in P^5\}$

Apply conf. thm. to each P'_0-rep. of N.

/ department of mathematics and computer science
Theorem 6. Let M be a 3-connected matroid with at least k inequivalent representations over $GF(5)$.

(i) $k \geq 2 \Rightarrow M$ representable over \mathbb{C}, $GF(p^2)$ for all primes $p \geq 3$, $GF(p)$ when $p \equiv 1 \pmod{4}$.

Quinary matroids
Theorem 6. Let M be a 3-connected matroid with at least k inequivalent representations over $GF(5)$.

(i) $k \geq 2 \Rightarrow M$ representable over \mathbb{C}, $GF(p^2)$ for all primes $p \geq 3$, $GF(p)$ when $p \equiv 1 \mod 4$.

(ii) $k \geq 3 \Rightarrow M$ representable over every field with at least five elements.
Quinary matroids

Theorem 6. Let M be a 3-connected matroid with at least k inequivalent representations over $\mathbb{GF}(5)$.

(i) $k \geq 2 \Rightarrow M$ representable over \mathbb{C}, $\mathbb{GF}(p^2)$ for all primes $p \geq 3$, $\mathbb{GF}(p)$ when $p \equiv 1 \mod 4$.

(ii) $k \geq 3 \Rightarrow M$ representable over every field with at least five elements.

(iii) $k \geq 4 \Rightarrow M$ is not binary and not ternary.
Theorem 6. Let M be a 3-connected matroid with at least k inequivalent representations over $\text{GF}(5)$.

(i) $k \geq 2 \Rightarrow M$ representable over \mathbb{C}, $\text{GF}(p^2)$ for all primes $p \geq 3$, $\text{GF}(p)$ when $p \equiv 1 \mod 4$.

(ii) $k \geq 3 \Rightarrow M$ representable over every field with at least five elements.

(iii) $k \geq 4 \Rightarrow M$ is not binary and not ternary.

(iv) $k \geq 5 \Rightarrow k = 6$.
Theorem 6. Let M be a 3-connected matroid with at least k inequivalent representations over $\text{GF}(5)$.

(i) $k \geq 2 \Rightarrow M$ representable over \mathbb{C}, $\text{GF}(p^2)$ for all primes $p \geq 3$, $\text{GF}(p)$ when $p \equiv 1 \mod 4$.

(ii) $k \geq 3 \Rightarrow M$ representable over every field with at least five elements.

(iii) $k \geq 4 \Rightarrow M$ is not binary and not ternary.

(iv) $k \geq 5 \Rightarrow k = 6$.

Ingredients of proof:

- Universal partial fields (for binary, ternary cases);
- Lift Theorem;
- Confinement Theorem.
$\tilde{F} := \{\tilde{p} \mid p \in \mathcal{F}(\mathbb{P})\}$ set of symbols, I ideal in $\mathbb{Z}[\tilde{F}]$ generated by

(i) $\tilde{0} - 0; \tilde{1} - 1$;

(ii) $\tilde{-1} + 1$ if $-1 \in \mathcal{F}(\mathbb{P})$;

(iii) $\tilde{p} + \tilde{q} - 1$, where $p, q \in \mathcal{F}(\mathbb{P}), p + q = 1$;

(iv) $\tilde{p}\tilde{q} - 1$, where $p, q \in \mathcal{F}(\mathbb{P}), pq = 1$;

(v) $\tilde{p}\tilde{q}\tilde{r} - 1$, where $p, q, r \in \text{Cr}(A), pqr = 1$, and

\[
\begin{bmatrix} 1 & 1 & 1 \\ 1 & p & q^{-1} \end{bmatrix} \preceq A \in \mathcal{A}.
\]
Lift Theorem

$\tilde{F} := \{\tilde{p} \mid p \in \mathcal{F}(P)\}$ set of symbols, I ideal in $\mathbb{Z}[\tilde{F}]$ generated by

(i) $\tilde{0} - 0; \tilde{1} - 1$;
(ii) $\tilde{1} + 1$ if $-1 \in \mathcal{F}(P)$;
(iii) $\tilde{p} + \tilde{q} - 1$, where $p, q \in \mathcal{F}(P), p + q = 1$;
(iv) $\tilde{p}\tilde{q} - 1$, where $p, q \in \mathcal{F}(P), pq = 1$;
(v) $\tilde{p}\tilde{q}\tilde{r} - 1$, where $p, q, r \in \text{Cr}(A), pqr = 1$, and

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & p & q^{-1}
\end{bmatrix} \preceq A \in A.
\]

Theorem 7. For $A \in A$, $M([I|A])$ is representable over $\mathbb{L}_A^P = (\mathbb{Z}[\tilde{F}]/I, \langle \tilde{F} \rangle)$.

/ department of mathematics and computer science
(i) \(k \geq 2 \Rightarrow M \) representable over \(\mathbb{C}, \text{GF}(p^2) \) for all primes \(p \geq 3 \), \(\text{GF}(p) \) when \(p \equiv 1 \mod 4 \).
(i) $k \geq 2 \Rightarrow M$ representable over \mathbb{C}, $GF(p^2)$ for all primes $p \geq 3$, $GF(p)$ when $p \equiv 1 \mod 4$.

- $P := GF(5) \otimes GF(5)$;
Quinary matroids (2)

(i) \(k \geq 2 \Rightarrow M \) representable over \(\mathbb{C}, \text{GF}(p^2) \) for all primes \(p \geq 3, \text{GF}(p) \) when \(p \equiv 1 \mod 4 \).

- \(\mathbb{P} := \text{GF}(5) \otimes \text{GF}(5) \);
- \(\varphi_i : \mathbb{P} \rightarrow \text{GF}(5) \): projection on \(i \)th coordinate;
(i) $k \geq 2 \Rightarrow M$ representable over \mathbb{C}, $\text{GF}(p^2)$ for all primes $p \geq 3$, $\text{GF}(p)$ when $p \equiv 1 \mod 4$.

- $\mathcal{P} := \text{GF}(5) \otimes \text{GF}(5)$;
- $\varphi_i : \mathcal{P} \rightarrow \text{GF}(5)$: projection on ith coordinate;
- \mathcal{A} is set of \mathcal{P}-matrices A with $\varphi_1(A) \not\sim \varphi_2(A)$;
(i) $k \geq 2 \Rightarrow M$ representable over \mathbb{C}, $GF(p^2)$ for all primes $p \geq 3$, $GF(p)$ when $p \equiv 1 \mod 4$.

- $\mathcal{P} := GF(5) \otimes GF(5)$;
- $\varphi_i : \mathcal{P} \to GF(5)$: projection on ith coordinate;
- \mathcal{A} is set of \mathcal{P}-matrices A with $\varphi_1(A) \not\sim \varphi_2(A)$;
- $H_2 := L_\mathcal{A}\mathcal{P}$.

Quinary matroids (2)
(i) $k \geq 2 \Rightarrow M$ representable over \mathbb{C}, $\text{GF}(p^2)$ for all primes $p \geq 3$, $\text{GF}(p)$ when $p \equiv 1 \mod 4$.

- $\mathcal{P} := \text{GF}(5) \otimes \text{GF}(5)$;
- $\varphi_i : \mathcal{P} \rightarrow \text{GF}(5)$: projection on ith coordinate;
- \mathcal{A} is set of \mathcal{P}-matrices A with $\varphi_1(A) \not\sim \varphi_2(A)$;
- $H_2 := L_{\mathcal{A}} \mathcal{P}$.

Note: \mathcal{A} is essential.

$$
\begin{pmatrix}
(1, 1) & (1, 1) & (1, 1) \\
(1, 1) & (2, 2) & (3, 3)
\end{pmatrix}
$$

Stabilizer Theorem implies these are not minors of $A \in \mathcal{A}$.
(i) $k \geq 2 \Rightarrow M$ representable over \mathbb{C}, $GF(p^2)$ for all primes $p \geq 3$, $GF(p)$ when $p \equiv 1 \mod 4$.

- $\mathbb{P} := GF(5) \otimes GF(5)$;
- $\varphi_i : \mathbb{P} \rightarrow GF(5)$: projection on ith coordinate;
- \mathcal{A} is set of \mathbb{P}-matrices A with $\varphi_1(A) \not\sim \varphi_2(A)$;
- $H_2 := L_\mathcal{A}\mathbb{P}$.

$$H_2 = (\mathbb{C}, \langle i, 1 - i \rangle).$$
Quinary matroids (2)

(i) \(k \geq 2 \Rightarrow M \) representable over \(\mathbb{C}, \text{GF}(p^2) \) for all primes \(p \geq 3, \text{GF}(p) \) when \(p \equiv 1 \mod 4 \).

- \(\mathbb{P} := \text{GF}(5) \otimes \text{GF}(5) \);
- \(\varphi_i : \mathbb{P} \rightarrow \text{GF}(5) \): projection on \(i \)th coordinate;
- \(\mathcal{A} \) is set of \(\mathbb{P} \)-matrices \(A \) with \(\varphi_1(A) \not\sim \varphi_2(A) \);
- \(\mathcal{H}_2 := \mathbb{L}_\mathcal{A}\mathbb{P} \).

\[
\mathcal{H}_2 = (\mathbb{C}, \langle i, 1 - i \rangle).
\]

\[
\mathcal{F}(\mathcal{H}_2) = \left\{ 0, 1, -1, 2, \frac{1}{2}, i, i + 1, \frac{i+1}{2}, 1 - i, \frac{1-i}{2}, -i \right\}.
\]

- Result follows by considering homomorphisms.
(ii) $k \geq 3 \Rightarrow M$ representable over every field with at least five elements.
(ii) $k \geq 3 \Rightarrow M$ representable over every field with at least five elements.

- $\mathcal{P} := \text{GF}(5) \otimes \text{GF}(5) \otimes \text{GF}(5)$;
(ii) $k \geq 3 \Rightarrow M$ representable over every field with at least five elements.

- $\mathbb{P} := \text{GF}(5) \otimes \text{GF}(5) \otimes \text{GF}(5)$;

- $\varphi_i : \mathbb{P} \rightarrow \text{GF}(5)$: projection on ith coordinate;
(ii) $k \geq 3 \implies M$ representable over every field with at least five elements.

- $\mathcal{P} := \text{GF}(5) \otimes \text{GF}(5) \otimes \text{GF}(5)$;
- $\varphi_i : \mathcal{P} \to \text{GF}(5)$: projection on ith coordinate;
- \mathcal{A} is set of \mathcal{P}-matrices A with $\varphi_i(A)$ nonequivalent;
(ii) \(k \geq 3 \Rightarrow M \) representable over every field with at least five elements.

- \(\mathcal{P} := \text{GF}(5) \otimes \text{GF}(5) \otimes \text{GF}(5) \);
- \(\varphi_i : \mathcal{P} \rightarrow \text{GF}(5) \): projection on \(i \)th coordinate;
- \(\mathcal{A} \) is set of \(\mathcal{P} \)-matrices \(A \) with \(\varphi_i(A) \) nonequivalent;
- \(H'_3 := L_{\mathcal{A}} \mathcal{P} \).
(ii) $k \geq 3 \Rightarrow M$ representable over every field with at least five elements.

- $\mathcal{P} := \text{GF}(5) \otimes \text{GF}(5) \otimes \text{GF}(5)$;
- $\varphi_i : \mathcal{P} \to \text{GF}(5)$: projection on ith coordinate;
- \mathcal{A} is set of \mathcal{P}-matrices A with $\varphi_i(A)$ nonequivalent;
- $H'_3 := L_{\mathcal{A}} \mathcal{P}$.

$$H'_3 = (\mathbb{Q}(\alpha), \langle \alpha, \alpha - 1, \alpha^2 - \alpha + 1, \frac{1}{2} \rangle).$$
(ii) $k \geq 3 \Rightarrow M$ representable over every field with at least five elements.

- $H'_3 = (\mathbb{Q}(\alpha), \langle \alpha, \alpha - 1, \alpha^2 - \alpha + 1, \frac{1}{2} \rangle)$.
(ii) $k \geq 3 \Rightarrow M$ representable over every field with at least five elements.

- $H_3' = (\mathbb{Q}(\alpha), \langle \alpha, \alpha - 1, \alpha^2 - \alpha + 1, \frac{1}{2} \rangle)$.

- $D := (\mathbb{Q}, \langle -1, \frac{1}{2} \rangle)$ is induced sub-partial field. D-confiners:

 $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1/2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
(ii) $k \geq 3 \Rightarrow M$ representable over every field with at least five elements.

- $\mathcal{H}_3' = (\mathbb{Q}(\alpha), \langle \alpha, \alpha - 1, \alpha^2 - \alpha + 1, \frac{1}{2} \rangle)$.

- $\mathcal{D} := (\mathbb{Q}, \langle -1, \frac{1}{2} \rangle)$ is induced sub-partial field. \mathcal{D}-confiners:

$$
\begin{bmatrix}
1 & 1 \\
1 & 2 \\
\end{bmatrix},
\begin{bmatrix}
1 & 1 \\
1 & 1/2 \\
\end{bmatrix},
\begin{bmatrix}
1 & 1 \\
1 & -1 \\
\end{bmatrix}
$$

- Consequence: matrices in \mathcal{A} representable over $\mathcal{H}_3 := (\mathbb{Q}(\alpha), \langle \alpha, \alpha - 1, \alpha^2 - \alpha + 1 \rangle)$.

- Homomorphism to every field with an x that is no root of $\alpha, \alpha - 1, \alpha^2 - \alpha + 1$.
(iii) $k \geq 4 \Rightarrow M$ is not binary and not ternary.
(iv) $k \geq 5 \Rightarrow k = 6$.

$H_4 := (\mathbb{Q}(\alpha, \beta), \langle \alpha, \beta, \alpha - 1, \beta - 1, \alpha\beta - 1, \alpha + \beta - 2\alpha\beta \rangle)$.

$H_5 := (\mathbb{Q}(\alpha, \beta, \gamma), \langle \alpha, \beta, \gamma, \alpha - 1, \beta - 1, \gamma - 1, \alpha - \gamma, \gamma - \alpha\beta, (1 - \gamma) - (1 - \alpha)\beta \rangle)$.

Main observation: six homomorphisms $H_5 \rightarrow \text{GF}(5)$.
More results

Corollaries of Confinement Theorem:

- Whittle’s Stabilizer Theorem;
Corollaries of Confinement Theorem:

- Whittle’s Stabilizer Theorem;
- Settlement Theorem: algebraic analog of Free Expansions [Geelen et al. 2002];
Corollaries of Confinement Theorem:

- Whittle’s Stabilizer Theorem;
- Settlement Theorem: algebraic analog of Free Expansions [Geelen et al. 2002];
- Whittle’s characterization of ternary matroids:

Theorem 8 (Whittle 1997). M 3-connected matroid representable over GF(3) and over \mathbb{F} not of characteristic 3. Then at least one of these is true:

(i) M is dyadic;
(ii) M is sixth-roots-of-unity.
More results

Corollaries of Confinement Theorem:

- Whittle’s Stabilizer Theorem;
- Settlement Theorem: algebraic analog of Free Expansions [Geelen et al. 2002];
- Whittle’s characterization of ternary matroids:

 Theorem 8 (Whittle 1997). M 3-connected matroid representable over GF(3) and over \mathbb{F} not of characteristic 3. Then at least one of these is true:

 (i) M is dyadic;
 (ii) M is sixth-roots-of-unity.

 Proof. Consider $\mathbb{P} := \text{GF}(3) \otimes \mathbb{F}$, and \mathbb{P}-matrix A. Then ...
\[\tilde{F} := \{ \tilde{p} \mid p \in \mathcal{F}(\mathbb{P}) \} \] set of symbols, \(I \) ideal in \(\mathbb{Z}[\tilde{F}] \) generated by

(i) \(\tilde{0} - 0; \tilde{1} - 1 \);

(ii) \(\tilde{-1} + 1 \) if \(-1 \in \mathcal{F}(\mathbb{P}) \);

(iii) \(\tilde{p} + \tilde{q} - 1 \), where \(p, q \in \mathcal{F}(\mathbb{P}) \), \(p + q = 1 \);

(iv) \(\tilde{p}\tilde{q} - 1 \), where \(p, q \in \mathcal{F}(\mathbb{P}) \), \(pq = 1 \);

(v) \(\tilde{p}\tilde{q}\tilde{r} - 1 \), where \(p, q, r \in \text{Cr}(A) \), \(pqr = 1 \), and

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & p & q^{-1}
\end{bmatrix} \preceq A.
\]

Theorem 9. \(M([I|A]) \) is representable over \(\mathbb{L}_{A^P} = (\mathbb{Z}[\tilde{F}]/I, \langle \tilde{F} \rangle) \).
(iii) \(\tilde{q} + \tilde{p} - 1 \), where \(p, q \in \mathcal{F}(\mathbb{P}) \), \(p + q = 1 \);
(iv) \(\tilde{p}\tilde{q} - 1 \), where \(p, q \in \mathcal{F}(\mathbb{P}) \), \(pq = 1 \);

Claim 10.

\[
\tilde{F} = \{0, 1\} \cup \left\{ \alpha, 1 - \alpha, \frac{1}{1 - \alpha'}, \frac{\alpha}{\alpha - 1}, \frac{\alpha - 1}{\alpha}, 1 \right\} \cup \left\{ \beta, 1 - \beta, \frac{1}{1 - \beta'}, \frac{\beta}{\beta - 1}, \frac{\beta - 1}{\beta}, 1 \right\} \cup \ldots
\]
(iii) \(\tilde{p} + \tilde{q} - 1 \), where \(p, q \in \mathcal{F}(\mathbb{P}) \), \(p + q = 1 \);
(iv) \(\tilde{p}\tilde{q} - 1 \), where \(p, q \in \mathcal{F}(\mathbb{P}) \), \(pq = 1 \);

Claim 10.

\[
\tilde{F} = \{0, 1\} \cup \left\{ \alpha, 1 - \alpha, \frac{1}{1 - \alpha'}, \frac{\alpha}{\alpha - 1}, \frac{\alpha - 1}{\alpha}, 1 \right\} \cup \left\{ \beta, 1 - \beta, \frac{1}{1 - \beta'}, \frac{\beta}{\beta - 1}, \frac{\beta - 1}{\beta}, 1 \right\} \cup \ldots
\]

Need to show:
- Relations *within* a set yield dyadic or \(\sqrt[6]{1} \)
- Only one such set needed
Question 11. Can we find the forbidden minors for GF(5)?

Conjecture 12. If N is 3-connected, with universal partial field \mathbb{P}_N, then N stabilizes the \mathbb{P}_N-representable matroids.

Question 13. Can we classify the universal partial fields of other classes of matroids?

First candidate: golden ratio matroids, i.e. those representable over $\text{GF}(4) \otimes \text{GF}(5)$.
The End

Thank you for your attention!

- Lifts: arXiv:0804.3263
- Confinement: arXiv:0806.4487