Laten zien dat het niet past/
How to show it doesn’t fit

Stefan van Zwam

Based on joint work with Rhiannon Hall and Dillon Mayhew

Nederlands Mathematisch Congres, April 15, 2009
ON THE ABSTRACT PROPERTIES OF LINEAR DEPENDENCE.¹

By Hassler Whitney.

1. Introduction. Let C_1, C_2, \ldots, C_n be the columns of a matrix M. Any subset of these columns is either linearly independent or linearly dependent; the subsets thus fall into two classes. These classes are not arbitrary; for instance, the two following theorems must hold:

(a) Any subset of an independent set is independent.

(b) If N_p and N_{p+1} are independent sets of p and $p+1$ columns respectively, then N_p together with some column of N_{p+1} forms an independent set of $p+1$ columns.

There are other theorems not deducible from these; for in §16 we give an example of a system satisfying these two theorems but not representing any matrix. Further theorems seem, however, to be quite difficult to find. Let us call a system obeying (a) and (b) a "matroid." The present paper is devoted to a study of the elementary properties of matroids. The fundamental question of completely characterizing systems which represent matrices is left unsolved. In place of the columns of a matrix we may equally well consider points or vectors in a Euclidean space, or polynomials, etc.
Linearly independent vectors in \mathbb{R}^n
Example

Linearly independent vectors in \mathbb{R}^n
Example

Linearly independent vectors in \mathbb{R}^n
Lemma. Given

\(E \): finite set of vectors
\(\mathcal{I} \): collection of linearly independent subsets

then

- \(\emptyset \in \mathcal{I} \)
- \(J \in \mathcal{I} \) and \(I \subseteq J \), then \(I \in \mathcal{I} \)
- \(I, J \in \mathcal{I} \) and \(|I| < |J| \), then

\[\exists e \in J \setminus I \text{ such that } I \cup \{e\} \in \mathcal{I} \]
Definition. Given

\(E: \) finite set

\(\mathcal{I}: \) collection of subsets

such that

- \(\emptyset \in \mathcal{I} \)
- \(J \in \mathcal{I} \) and \(I \subseteq J \), then \(I \in \mathcal{I} \)
- \(I, J \in \mathcal{I} \) and \(|I| < |J| \), then

\[\exists e \in J \setminus I \text{ such that } I \cup \{e\} \in \mathcal{I} \]

Then \(M = (E, \mathcal{I}) \) is a matroid.
1899: Hilbert, Bernays: Plane geometry
1900–1936: Dedekind, Birkhoff, MacLane: Semimodular lattices
1910–1937: Steinitz, Van der Waerden: Algebraic dependence
1936: Nakasawa: Projective geometry
1935: Whitney: Lin. dependence, duality, graphs
1942: Rado: Transversals (matching theory)
1958: Tutte: Connectivity, minors, …
1971: Edmonds: Greedy algorithm
Rota, Brylawski, Seymour, …
The representation problem

Problem. Is there a map

\[E \rightarrow \mathbb{F}^n \]

preserving the dependencies of \(M = (E, \mathcal{I}) \)?
Matroid representation

Example: the Fano matroid

- $E = \{ \text{points} \}$
- $\mathcal{I} = \{ X \subseteq E \text{ in general position} \}$
Matroid representation

Example: the Fano matroid

- $E = \{ \text{points} \}$
- $I = \{ X \subseteq E \text{ in general position} \}$
Example: the Fano matroid

- $E = \{ \text{points} \}$
- $\mathcal{I} = \{ X \subseteq E \text{ in general position} \}$
Matroid representation

Example: the Fano matroid

- $E = \{ \text{points} \}$
- $\mathcal{I} = \{ X \subseteq E \text{ in general position} \}$
Example: the Fano matroid

- $E = \{ \text{points} \}$
- $I = \{ X \subseteq E \text{ in general position} \}$
Matroid representation

Example: the Fano matroid

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0 \\
\end{bmatrix} - \begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 2 \\
\end{bmatrix}
\]
How to show it doesn’t fit?

Problem. Is there a dependency-preserving map

$$E(M) \rightarrow F$$
How to show it doesn’t fit?

Problem. Is there a dependency-preserving map

\[E(M) \rightarrow F \]

- “Yes” certified by vectors \(\{v_1, \ldots, v_n\} \)
How to show it doesn’t fit?

Problem. Is there a dependency-preserving map

\[E(M) \rightarrow \mathbb{F} \]

• “Yes” certified by vectors \(\{ v_1, \ldots, v_n \} \)

• **How to certify “no”**?
Reducing a set of vectors: deletion
Reducing a set of vectors: deletion
Reducing a set of vectors: projection
Reducing a set of vectors: projection
Reducing a set of vectors: projection
Abstract definition

• **Deletion**: \(M \setminus e := (E \setminus \{e\}, \{I \in \mathcal{I} : e \notin I\}) \)

• **Contraction**: \(M/e := (E \setminus \{e\}, \{I : I \cup \{e\} \in \mathcal{I}\}) \)

• **Minors**: Obtained from sequence of such steps
Abstract definition

- **Deletion**: $M \setminus e := (E \setminus \{e\}, \{I \in \mathcal{I} : e \notin I\})$
- **Contraction**: $M/e := (E \setminus \{e\}, \{I : I \cup \{e\} \in \mathcal{I}\})$
- **Minors**: Obtained from sequence of such steps
 - Generate partial order
 - Preserve representability
Matroid minors

Excluded minors
That’s how!

Problem:
Is there a dependency-preserving map

\[E(M) \rightarrow GF(2) \]

- How to certify the answer is “no”?
- By reducing to an excluded minor!
That’s how!

Problem:
Is there a dependency-preserving map

\[E(M) \rightarrow GF(2) \]

- How to certify the answer is “no”?
- By reducing to an excluded minor!
- Rota’s Conjecture: finitely many
Rota’s Conjecture

Conjecture (Rota 1971): If \(F \) is finite, then there exists \(k = k(F) \): exactly \(k \) excluded minors for \(M : E(M) \rightarrow \mathbb{F} \)
Rota’s Conjecture

Conjecture (Rota 1971): \(F \) finite, then \(\exists k = k(F) : \) exactly \(k \) excluded minors for

\[
\left\{ M : E(M) \rightarrow GF(F) \right\}
\]

- Proven for \(F \in \{ GF(2), GF(3), GF(4) \} \)
Regular matroids

Theorem (Tutte 1958):
Exactly 3 excluded minors for

\[
\left\{ M : E(M) \rightarrow \begin{align*}
&\text{GF}(2) \\
&\text{GF}(3) \\
&\text{GF}(4) \\
&\text{GF}(5) \\
&\text{GF}(7) \\
&\vdots
\end{align*} \right\}
\]
Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for

\[\{ M : E(M) \rightarrow \{ \text{GF(3)}, \text{GF(4)}, \text{GF(5)}, \text{GF(7)}, \ldots \} \} \]
Excluded minors for near-regular

\[
\{ \text{\begin{itemize}
\item \text{,}
\end{itemize}} \} \}
\]
Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009): Exactly 10 excluded minors for

\[
\left\{ M : E(M) \rightarrow \begin{array}{c} GF(3) \\ GF(4) \\ GF(5) \\ GF(7) \\ \vdots \end{array} \right\}
\]
Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for

\[
\left\{ M : E(M) \rightarrow P \right\}
\]

Matroid representation
Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for

\[M : E(M) \rightarrow \mathbb{GF}(2) \]

Why care?
- Complexity of algorithms
- Structure of ternary matroids
- Sharpening the knives for Rota’s Conjecture
Summary

- Matroid axioms abstract linear dependence
- Matroids occur everywhere
- Representation problem
- Excluded minors
- Near-regular matroids

Thank you for listening

Preprint at http://www.win.tue.nl/~svzwam/