Representing some non-representable matroids

Stefan van Zwam

Based on joint work with Rudi Pendavingh

AMS Sectional Meeting Lexington, Kentucky, March 27, 2010
Overview

I. Partial fields: a crash course
II. Skew partial fields
III. A matroid
Part I
Partial Fields: a crash course
Total unimodularity

Definition:
Weakly unimodular matrix:

- $r \times E$ matrix A over \mathbb{Z}
- $\det(D) \in \{-1, 1\} \cup 0$, \forall $r \times r$ submatrix D, not all 0

\[
\begin{bmatrix}
e & f & g \\
1 & 1 & 0 & 1 \\
2 & 3 & -1 & 2
\end{bmatrix}
\]
Total unimodularity

Definition:
Weakly unimodular matrix:

- $r \times E$ matrix A over \mathbb{Z}
- $\det(D) \in \{−1, 1\} \cup 0$, $\forall r \times r$ submatrix D, not all 0

Theorem (Tutte 1958):
Equivalent for matroid M:

- M regular
- M has weakly unimodular representation
Partial fields

Definition:

- \(r \times E \) matrix \(A \) over \(R \)
- \(\text{det}(D) \in G \cup 0 \), for all \(r \times r \) submatrix \(D \), not all 0
Partial fields

Definition:
(Weak) \mathbb{P}-matrix:

- $r \times E$ matrix A over R
- $\det(D) \in G \cup 0$, \forall $r \times r$ submatrix D, not all 0

Definition:
Partial field $\mathbb{P} := (R, G)$

- R commutative ring
- $G \subseteq R^*$ group
- $-1 \in G$
Partial fields

Definition:
(Weak) \mathcal{P}-matrix:
- $r \times E$ matrix A over R
- $\det(D) \in G \cup 0$, \forall $r \times r$ submatrix D, not all 0

Definition:
Partial field $\mathcal{P} := (R, G)$
- R commutative ring
- $G \subseteq R^*$ group
- $-1 \in G$

Example: $\mathbb{U}_0 = (\mathbb{Z}, \{-1, 1\})$
\textbf{\(\mathbb{P}\)-matroid}

\textbf{Definition:}
(Weak) \(\mathbb{P}\)-matrix:

- \(r \times E\) matrix \(A\) over \(R\)
- \(\det(D) \in G \cup 0\), \(\forall\) \(r \times r\) submatrix \(D\), not all 0
P-matroid

Definition:
(Weak) P-matrix:

- $r \times E$ matrix A over R
- $\det(D) \in G \cup 0$, \forall $r \times r$ submatrix D, not all 0

Theorem (Pendavingh, vZ 2008):

$$\{ B \subseteq E : |B| = r, \det(A[r, B]) \neq 0 \}$$

is set of bases of matroid M.

(Strengthening of [Semple, Whittle 1996])
Homomorphisms

Definition:
Ring homomorphism $\varphi : R_1 \rightarrow R_2$

- $\varphi(1) = 1$
- $\varphi(p)\varphi(q) = \varphi(pq)$
- $\varphi(p) + \varphi(q) = \varphi(p + q)$
Homomorphisms

Definition:
Ring homomorphism $\varphi : R_1 \rightarrow R_2$

- $\varphi(1) = 1$
- $\varphi(p)\varphi(q) = \varphi(pq)$
- $\varphi(p) + \varphi(q) = \varphi(p + q)$

Lemma.

$$\det(\varphi(A)) = \varphi(\det(A))$$
$$\det(\varphi(A)) = 0 \iff \det(A) = 0$$
Theorem:

\[\{ B \subseteq E : |B| = r, \det(A[r, B]) \neq 0 \} \]

is set of bases of matroid \(M \).
Axiom of choice warning
Proof

Lemma:

R commutative ring

- R has maximal ideal I
- R/I is a field
Proof

Lemma:
R commutative ring

- R has maximal ideal I
- R/I is a field

Homomorphism $\varphi : R \to R/I$
Proof

Lemma:
R commutative ring
- R has maximal ideal I
- R/I is a field

Homomorphism $\varphi : R \rightarrow R/I$

$$\{B \subseteq E : |B| = r, \det(A[r,B]) \neq 0\}$$
Proof

Lemma:
R commutative ring
- R has maximal ideal I
- R/I is a field

Homomorphism $\phi : R \to R/I$

$$\{B \subseteq E : |B| = r, \det(A[r,B]) \neq 0\}$$

$$= \{B \subseteq E : |B| = r, \phi(\det(A[r,B])) \neq 0\}$$
Proof

Lemma:
R commutative ring
- R has maximal ideal I
- R/I is a field

Homomorphism $\varphi : R \to R/I$

$$\{B \subseteq E : |B| = r, \det(A[r, B]) \neq 0\}$$

$$= \{B \subseteq E : |B| = r, \varphi(\det(A[r, B])) \neq 0\}$$

$$= \{B \subseteq E : |B| = r, \det(\varphi(A[r, B])) \neq 0\}$$
Many representations from one

Theorem. If

- M is representable over (R_1, G_1)
- $\varphi : R_1 \rightarrow R_2$
- $\varphi(G_1) \subseteq G_2$

then M is representable over (R_2, G_2)
Many representations from one

Theorem. If

- M is representable over (R_1, G_1)
- $\varphi : R_1 \to R_2$
- $\varphi(G_1) \subseteq G_2$

then M is representable over (R_2, G_2)

\[
\{ B \subseteq E : |B| = r, \det(A[r, B]) \neq 0 \}
= \{ B \subseteq E : |B| = r, \varphi(\det(A[r, B])) \neq 0 \}
= \{ B \subseteq E : |B| = r, \det(\varphi(A[r, B])) \neq 0 \}
\]
Application: universal partial fields

Theorem (Pendavingh, vZ 2009): For every M there exist P_M and A_M such that

$$\exists \varphi : P_M \rightarrow P \text{ with } \varphi(A_M) \approx A$$

for every P-representation A of M.
Example

$\mathcal{P}_{\text{Betsy Ross}} = \mathcal{G}$, golden ratio partial field
Example

$P_{P_8} = \mathbb{D}$, dyadic partial field
Dyadic matroids

Theorem (Whittle 1997):
Equivalent for matroid M:

(i) M representable over $\text{GF}(3)$ and $\text{GF}(5)$
(ii) M representable over $\mathbb{D} = (\mathbb{Z}[\frac{1}{2}], \{\pm 2^k\})$
(iii) M representable over \mathbb{F} unless $\chi(\mathbb{F}) = 2$
One representation from many

\[P_1 \times P_2 := (R_1 \times R_2, G_1 \times G_2) \]

Lemma (Pendavingh, vZ 2008):
Matroid representable over both \(P_1 \) and \(P_2 \)
\[\iff \]
Matroid representable over \(P_1 \times P_2 \)
Application: Lift Theorem

Theorem (Pendavingh, vZ 2008):
Partial fields \mathcal{P}, $\hat{\mathcal{P}}$
Homomorphism $\phi : \hat{\mathcal{P}} \to \mathcal{P}$
If bijection between representations over \mathcal{P} and $\hat{\mathcal{P}}$ of

\[
\left\{ \begin{array}{c}
\{ M : E(M) \to \mathcal{P} \} \\
\{ M : E(M) \to \hat{\mathcal{P}} \}
\end{array} \right.
\]

then

\[
\left\{ \begin{array}{c}
\{ M : E(M) \to \mathcal{P} \} \\
\{ M : E(M) \to \hat{\mathcal{P}} \}
\end{array} \right. = \left\{ \begin{array}{c}
\{ M : E(M) \to \mathcal{P} \} \\
\{ M : E(M) \to \hat{\mathcal{P}} \}
\end{array} \right.
\]
Application: Lift Theorem

Theorem (Pendavingh, vZ 2008):
Partial fields \mathbb{P}, \mathbb{P}
Homomorphism $\varphi : \mathbb{P} \rightarrow \mathbb{P}$
If bijection between representations over \mathbb{P} and \mathbb{P} of

then

\[
\left\{ M : E(M) \rightarrow \begin{array}{c} \mathbb{P} \\ \end{array} \right\} = \left\{ M : E(M) \rightarrow \begin{array}{c} \mathbb{P} \\ \end{array} \right\}
\]

Proof generalizes Gerards’ (1989) proof of excluded minors for regular matroids
Examples

(Whittle 1997) Equivalent are:

- Representable over GF(3) and GF(5)
- Representable over $\mathbb{D} = (\mathbb{Z}[\frac{1}{2}], \{\pm 2^k\})$
Examples

(Whittle 1997) Equivalent are:

- Representable over GF(3) and GF(5)
- Representable over $\mathbb{D} = (\mathbb{Z}[\frac{1}{2}], \{\pm 2^k\})$

(Whittle 1997) Equivalent are:

- Representable over GF(3) and GF(8)
- Representable over $\mathbb{U}_1 = (\mathbb{Q}(\alpha), \{\pm \alpha^k(1 - \alpha)^l\})$
Examples

(Whittle 1997) Equivalent are:
- Representable over $\text{GF}(3)$ and $\text{GF}(5)$
- Representable over $\mathbb{D} = (\mathbb{Z}[\frac{1}{2}], \{\pm 2^k\})$

(Whittle 1997) Equivalent are:
- Representable over $\text{GF}(3)$ and $\text{GF}(8)$
- Representable over $\bigcup_1 = (\mathbb{Q}(\alpha), \{\pm \alpha^k(1 - \alpha)^l\})$

(Pendavingh, vZ 2008) Equivalent are:
- Representable over $\text{GF}(4)$ and $\text{GF}(5)$
- Representable over $\mathbb{G} = (\mathbb{R}, \{\pm \tau^k\})$

where τ is golden ratio, root of $x^2 - x - 1$
Two conjectures

Conjecture
Equivalent are:

- Representable over $\text{GF}(2^k)$ for $k \geq 2$
- Representable over $U_{1}^{(2)} = (\text{GF}(2)(\alpha), \{\alpha^k(1 + \alpha)^l\})$
Two conjectures

Conjecture
Equivalent are:

• Representable over $\text{GF}(2^k)$ for $k \geq 2$
• Representable over

$$\mathbb{U}_1^{(2)} = (\text{GF}(2)(\alpha), \{\alpha^k(1 + \alpha)^l\})$$

Conjecture
Equivalent are:

• Representable over \mathbb{F} if $|\mathbb{F}| \geq 4$
• Representable over

$$\mathbb{P}_4 = (\mathbb{Q}(\alpha), \{\alpha^k(1 - \alpha)^l(1 + \alpha)^m(2 - \alpha)^n\})$$
Application: excluded minors for near-regular

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for

\[M : E(M) \rightarrow \{ \text{GF}(3), \text{GF}(4), \text{GF}(5), \text{GF}(7), \ldots \} \]
namely

\[\begin{cases}
\ldots, & \ldots, & \left(\begin{array}{c}
\bullet
\end{array}\right)^*,
\end{cases}\]

\[\begin{cases}
\ldots, & \left(\begin{array}{c}
\bullet
\end{array}\right)^*,
\end{cases}\]

\[\begin{cases}
\ldots, & \left(\begin{array}{c}
\bullet
\end{array}\right)^*,
\end{cases}\]

\[\begin{cases}
\ldots, & \left(\begin{array}{c}
\bullet
\end{array}\right)^*,
\end{cases}\]
Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for

\[
\left\{ M : E(M) \rightarrow \begin{array}{c}
GF(3) \\
GF(4) \\
GF(5) \\
GF(7) \\
\vdots
\end{array} \right\}
\]
Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for

\[M : E(M) \rightarrow \bigcup_1 \]
Part II
Skew Partial Fields
Abandoning commutativity

Until now:

- Rings commutative
- All matroids representable over some field
Abandoning commutativity

Until now:

- Rings commutative
- All matroids representable over some field

Definition:

Skew partial field \(\mathbb{P} := (R, G) \)

- \(R \) ring
- \(G \subseteq R^* \) group
- \(-1 \in G\)
Abandoning commutativity

Until now:

- Rings commutative
- All matroids representable over some field

Definition:

Skew partial field \(\mathcal{P} := (R, G) \)

- \(R \) ring
- \(G \subseteq R^* \) group
- \(-1 \in G\)

Big problem: **Determinants**
What Would Tutte Do?
Chain groups

Definition: R ring, E finite set. *Chain group* is

$$C \subseteq R^E$$

such that, for $c, d \in C$ and $r \in R$

- $0 \in C$
- $c + d \in C$
- $rc \in C$
Chain groups

Definition: R ring, E finite set. Chain group is

$$C \subseteq R^E$$

such that, for $c, d \in C$ and $r \in R$

- $0 \in C$
- $c + d \in C$
- $rc \in C$

Definition: Support of a chain c:

$$\|c\| := \{e \in E : c_e \neq 0\}$$
Chain groups

Definition: \(R \) ring, \(E \) finite set. Chain group is
\[
C \subseteq R^E
\]
such that, for \(c, d \in C \) and \(r \in R \)
- \(0 \in C \)
- \(c + d \in C \)
- \(rc \in C \)

Definition: Support of a chain \(c \):
\[
\|c\| := \{ e \in E : c_e \neq 0 \}
\]

Definition: Elementary chain: \(c \neq 0 \), inclusionwise minimal support.
Chain groups

Definition: *Skew partial field* $\mathbb{P} := (R, G)$

- R ring
- $G \subseteq R^*$ group
- $-1 \in G$
Chain groups

Definition: Skew partial field \(\mathbb{P} := (R, G) \)

- \(R \) ring
- \(G \subseteq R^* \) group
- \(-1 \in G\)

Definition: \(G \)-primitive chain: \(c \in (G \cup \{0\})^E \).
Chain groups

Definition: *Skew partial field* $\mathbb{P} := (R, G)$

- R ring
- $G \subseteq R^*$ group
- $-1 \in G$

Definition: *G-primitive* chain: $c \in (G \cup \{0\})^E$.

Definition: Chain group is \mathbb{P}-chain group if, for all $c \in C$ elementary,

$$c = rd$$

where $r \in R$ and $d \in C$ is G-primitive.
Chain groups

Theorem (Pendavingh, vZ 2009):
For a \mathcal{P}-chain group C, define

$$\mathcal{C}^* := \{||c|| : c \in C, \text{elementary}\}$$

Then \mathcal{C}^* is set of cocircuits of a matroid, $M(C)$.

Chain groups

Theorem (Pendavingh, vZ 2009):
For a \mathcal{P}-chain group C, define

$$C^* := \{ \|c\| : c \in C, \text{elementary} \}$$

Then C^* is set of cocircuits of a matroid, $M(C)$.

Proof: Let $e \in \|c\| \cap \|c'\|$. Assume c, c' G-primitive. Then $(c_e)^{-1}c - (c'_e)^{-1}c' \in C. \square$
Representability redefined

Definition:
A matroid M is \mathbb{P}-representable if there is a \mathbb{P}-chain group with $M = M(C)$.
Duality

Definition:

Opposite of a ring $R = (S, 0, 1, +, \cdot)$ is

$$R^\circ := (S, 0, 1, +, \circ)$$

with $r \circ s := s \cdot r$.
Duality

Definition:
Opposite of a ring $R = (S, 0, 1, +, \cdot)$ is

$$R^\circ := (S, 0, 1, +, \circ)$$

with $r \circ s := s \cdot r$.

Definition:
Opposite partial field is

$$\mathbb{P}^\circ := (R^\circ, G^\circ).$$
Duality

Definition: Opposite of a ring $R = (S, 0, 1, +, \cdot)$ is

$$R^\circ := (S, 0, 1, +, \circ)$$

with $r \circ s := s \cdot r$.

Definition: Opposite partial field is

$$\mathbb{P}^\circ := (R^\circ, G^\circ).$$

Theorem: M is \mathbb{P}-representable if and only if M^\ast is \mathbb{P}°-representable
Generator matrix

- Pick basis B
- B-fundamental cocircuits: $C_{B,e}$
- Pick G-primitive chains a^e for $C_{B,e}$
- Let A be matrix with rows a^e

Theorem (Pendavingh, vZ 2009):
The row span of A equals the chain group.

Theorem (Pendavingh, vZ 2009):
B is a basis if and only if $A[r, B]$ is invertible.
Tutte’s Representability Theorem

Definition:
Cocircuits D_1, \ldots, D_k are modular if

$$\text{rk}(M.(D_1 \cup \cdots \cup D_k)) = 2$$

Theorem (Pendavingh, vZ, after Tutte):
For each $D \in C^*$, pick G-primitive chain α^D. Let C be chain group thus generated.
Then $M = M(C)$ if and only if $\exists p, p', p'' \in G$

$$p\alpha^D + p'\alpha^{D'} + p''\alpha^{D''} = 0$$

whenever D, D', D'' are modular.
Part III

A matroid
Example

Quaternion group H:

- 8 elements: $\{1, i, j, k, -1, -i, -j, -k\}$
- Relations $i^2 = j^2 = k^2 = ijk = -1$

Quaternions $\mathbb{H} := \mathbb{R}[i, j, k]$ form a skew field.
Example

Quaternion group \(H \):

- 8 elements: \(\{1, i, j, k, -1, -i, -j, -k\} \)
- Relations \(i^2 = j^2 = k^2 = ijk = -1 \)

Quaternions \(\mathbb{H} := \mathbb{R}[i, j, k] \) form a skew field.

\(Q_3(H) \) is rank-3 Dowling geometry of \(H \).

Representation: \(\mathbb{H} \)-chain group is generated by

\[
\begin{bmatrix}
1 & 0 & 0 & -1 & 0 & 1 & -1 & 0 & i & \cdots & -1 & 0 & -k \\
0 & 1 & 0 & 1 & -1 & 0 & i & -1 & 0 & & -k & -1 & 0 \\
0 & 0 & 1 & 0 & 1 & -1 & 0 & i & -1 & & 0 & -k & -1
\end{bmatrix}
\]
Example

Theorem (Pendavingh, vZ 2009):
The matroid $Q_3(H) \oplus PG(3, 3)$ is representable over a skew partial field \mathbb{P} if and only if there is a (ring) homomorphism

$$(GF(3)[i, j, k], H) \rightarrow \mathbb{P}$$
Example

Theorem (Pendavingh, vZ 2009):
The matroid $Q_3(H) \oplus PG(3, 3)$ is representable over a skew partial field \mathbb{P} if and only if there is a (ring) homomorphism

$$(GF(3)[i, j, k], H) \rightarrow \mathbb{P}$$

Corollary (Pendavingh, vZ 2009):
This matroid is not representable over any skew field!
Example

Theorem (Pendavingh, vZ 2009):
The matroid \(Q_3(H) \oplus PG(3, 3) \) is representable over a skew partial field \(\mathbb{P} \) if and only if there is a (ring) homomorphism

\[
(GF(3)[i, j, k], H) \rightarrow \mathbb{P}
\]

Corollary (Pendavingh, vZ 2009):
This matroid is not representable over any skew field!

Remark:
Usual suspects (Vámos, non-Desargues) still not representable.
Open problems

Problem: Find small, 3-connected \mathbb{P}-representable matroids not representable over any field.

Problem: For which groups G are the Dowling geometries \mathbb{P}-representable for some skew partial field?

Problem: Does Ingleton’s Inequality hold for skew-partial-field-representable matroids?
Slides, preprints at http://www.cwi.nl/~zwam/
Copies of thesis available!
The End