Stability, Fragility, and Rota’s Conjecture

Stefan van Zwam

Based on joint work with Carolyn Chun, Rhiannon Hall, Dillon Mayhew, Rudi Pendavingh, and Geoff Whittle

SIAM Conference on Discrete Mathematics, June 15, 2010
Theorem (Mayhew, Whittle, vZ 2010). Rota’s Conjecture for GF(5) is implied by the Bounded Canopy Conjecture.
Ingredients

I. Rota’s Conjecture
II. Stabilizers
III. Fragility
IV. Blocking Sequences
Part I

Rota’s Conjecture
Matroid representation

Definition. Representation of matroid M over (partial) field \mathbb{F}: dependency-preserving map $E(M) \to \mathbb{F}^r$

Problem. How to show no such map exists?
Minors

- **Deletion**: $M \setminus e := (E - \{e\}, \{I \in \mathcal{I} : e \notin I\})$
- **Contraction**: $M/e := (E - \{e\}, \{I : I \cup \{e\} \in \mathcal{I}\})$
- **Minors**: Obtained from sequence of such steps
Minors

- **Deletion**: \(M \setminus e := (E - \{ e \}, \{ I \in \mathcal{I} : e \notin I \}) \)
- **Contraction**: \(M/e := (E - \{ e \}, \{ I : I \cup \{ e \} \in \mathcal{I} \}) \)
- **Minors**: Obtained from sequence of such steps
 - Generate partial order
 - Preserve representability
Excluded minors
Rota’s Conjecture

Conjecture (Rota 1971): If \mathbb{F} finite, then $\exists k = k(\mathbb{F})$: exactly k excluded minors for

\[
\left\{ M : E(M) \rightarrow \mathbb{F} \right\}
\]
Rota’s Conjecture

Conjecture (Rota 1971): \(F \) finite, then \(\exists k = k(F) \): exactly \(k \) excluded minors for

\[
\left\{ M : E(M) \rightarrow F \right\}
\]

Proven for:

- GF(2): Tutte (1958)
- GF(3): Bixby (1979), Seymour (1979)
Rota’s Conjecture

Conjecture (Rota 1971): If \mathbb{F} finite, then $\exists k = k(\mathbb{F})$: exactly k excluded minors for

$$\left\{ M : E(M) \rightarrow \mathbb{F} \right\}$$

- $\mathbb{GF}(2)$: 1
- $\mathbb{GF}(3)$: 4
- $\mathbb{GF}(4)$: 7
- $\mathbb{GF}(5)$: ≥ 564 (Mayhew, Royle ’09)
Sketch of a proof

(i) Take an excluded minor M

(ii) Show it’s not too big

Definition.

$u, v \subseteq E(M)$ is deletion pair if

• $\text{rk}^*(\{u, v\}) = 2$

• ...
Sketch of proof

\[E(M \setminus \nu) \rightarrow A_1 \]

\[E(M \setminus u) \rightarrow A_2 \]
Sketch of proof

\[E(M \setminus \nu) \rightarrow A' \]

\[E(M \setminus u) \rightarrow A' \]

\[E(M \setminus \nu) \rightarrow E(M \setminus \nu) \rightarrow \]

\[A' \]

\[\chi \]

\[\chi' \]

\[u \quad \nu \]
Sketch of proof

\[A = A' \]

[Diagram showing a rectangular matrix with parts labeled u, x, v, and x']
Sketch of proof

\[
A = A' \\
M \neq M[A]
\]
Sketch of proof

\[A = B \text{ basis in one of } M, M[A] \]
Sketch of proof

\[A = B \text{ basis in one of } M, M[A] \]
Sketch of proof

$A = \begin{pmatrix} 1 & \ast & \ast \\ a & 1 & \ast \\ b & \ast & \ast \end{pmatrix}$

B basis in one of $M, M[A]$
Sketch of proof
Sketch of proof

GF(2):

\[
\begin{array}{cc}
 a & u \\
 b & v \\
\end{array}
\]

GF(3):

\[
\begin{array}{ccc}
 a & u & v \\
 b & * & * \\
\end{array}
\]

\[
\begin{array}{cc}
 a & * \\
 b & * \\
\end{array}
\]

\[
\begin{array}{cc}
 a & * \\
 b & 0 \\
\end{array}
\]

\[
\begin{array}{cc}
 a & * \\
 b & 0 \\
\end{array}
\]

\[
\begin{array}{cc}
 a & 0 \\
 b & * \\
\end{array}
\]
Part II
Stabilizers
Sketch of proof

\[E(M \setminus v) \rightarrow A_1 \]

\[E(M \setminus u) \rightarrow A_2 \]
Sketch of proof

\[E(M \setminus \nu) \rightarrow A' \]

\[E(M \setminus u) \rightarrow A' \]
Stabilizers

Definition.

N stabilizes M over \mathbb{F} if $N \leq M$ and representations of N extend to at most one representation of M.
Stabilizers

Definition.
\(N \) stabilizes \(M \) over \(\mathbb{F} \) if \(N \preceq M \) and representations of \(N \) extend to at most one representation of \(M \).

Definition.
\(N \) strongly stabilizes \(M \) over \(\mathbb{F} \) if \(N \preceq M \) and representations of \(N \) extend to exactly one representation of \(M \).
Stabilizers

Definition.

\(N \) stabilizes \(M \) over \(\mathbb{F} \) if \(N \preceq M \) and representations of \(N \) extend to at most one representation of \(M \).

Definition.

\(N \) strongly stabilizes \(M \) over \(\mathbb{F} \) if \(N \preceq M \) and representations of \(N \) extend to exactly one representation of \(M \).

Definition.

\(N \) (strongly) stabilizes \(\mathcal{M} \) if \(N \) (strongly) stabilizes all 3-connected members in \(\mathcal{M} \) with \(N \)-minor.
Stabilizers

Theorem (Kahn 1988).
$U_{2,4}$ is a strong stabilizer for $\mathcal{M}(GF(4))$.

Theorem (Whittle 1999).
$U_{2,5}, U_{3,5}$ are stabilizers for $\mathcal{M}(GF(5))$.
Deletion pairs, updated

Definition.

\(u, v \subseteq E(M) \) is deletion pair preserving \(N \) if

- \(\text{rk}^*(\{u, v\}) = 2 \)
- \(M \setminus u, v \) has \(N \)-minor
- \(\text{co}(M \setminus u), \text{co}(M \setminus v), \text{co}(M \setminus u, v) \) are 3-connected
Part III
Fragility
Fragility

Definition.

\(M \) is \(N \)-fragile if \(\forall e \in E(M) \) one of \(M \setminus e, M/e \) has no \(N \)-minor.

Strictly: \(M \) has \(N \)-minor.
Fragility

Basic properties of N-fragile matroid M

- M is 3-connected up to parallel and series classes
- Minor-closed
Fragility

Basic properties of N-fragile matroid M

- M is 3-connected up to parallel and series classes
- Minor-closed

Example.
$U_{2,4}$-fragile, simple, cosimple matroid in GF(4) is $U_{2,5}$, $U_{3,5}$, or a whirl.
Bounded Canopy Conjecture

Conjecture (Geelen, Gerards, Whittle 2006).

\[\exists k = k(N, F) : \]

If \(M \) is \(F \)-representable, strictly \(N \)-fragile then

\[\text{branch width}(M) \leq k \]
Bounded Canopy Conjecture

Conjecture (Geelen, Gerards, Whittle 2006).

\[\exists k = k(N, F) : \]

If \(M \) is \(F \)-representable, strictly \(N \)-fragile then

\[\text{branch width}(M) \leq k \]

Theorem (Robertson, Seymour XXII)

It’s true for graphs.
Bounded Canopy Conjecture

Conjecture (Geelen, Gerards, Whittle 2006).
\[\exists k = k(N, F) : \]
If \(M \) is \(F \)-representable, strictly \(N \)-fragile then
\[\text{branch width}(M) \leq k \]

Theorem (Robertson, Seymour XXII)
It’s true for graphs.

Theorem (Geelen, Whittle 2002).
\[\forall k \in \mathbb{N}: \text{finitely many excluded minors for } M(GF(q)) \]
have branch width \(k \).
Part IV

Blocking Sequences
Connectivity

Need:

- essentially 3-connected minor with N, a, b, u
- essentially 3-connected minor with N, a, b, v
- together bounded branch width
Blocking Sequences

- N' is strictly N-fragile matroid in $M\setminus u, v$
- Add back a, b, u or v: 2-separations
- Fix these with *blocking sequence*
Blocking Sequences

- N' is strictly N-fragile matroid in $M\setminus u, v$
- Add back a, b, u or v: 2-separations
- Fix these with blocking sequence

Theorem (Geelen, Hliněný, Whittle 2004).
If $\{v_1, \ldots, v_t\}$ is blocking sequence for k-separation (A, B) then adding back $\{v_1, \ldots, v_t\}$ increases branch width by at most k.

Conclusion

Theorem (Mayhew, Whittle, vZ 2010).

\(\mathbb{F} \) finite field, \(N \) matroid such that

(i) \(N \) is 3-connected, not binary

(ii) \(N \) stabilizes \(\mathcal{M}(\mathbb{F}) \)

If Bounded Canopy Conjecture is true for \(\mathbb{F} \), then finitely many excluded minors for \(\mathcal{M} \) have \(N \)-minor.
Explicit computations

Theorem (Geelen, Gerards, Kapoor 2000).
Exactly 7 excluded minors for $\mathcal{M}(\text{GF}(4))$.

Theorem (Hall, Mayhew, vZ 2009).
Exactly 10 excluded minors for near-regular matroids
namely

\[\{ \ldots, \quad \Delta Y \quad \} \]
Quinary matroids

Theorem (Pendavingh, vZ 2008).

- 1 quinary representations $\Rightarrow \mathbb{H}_1$-representable
- 2 quinary representations $\Rightarrow \mathbb{H}_2$-representable
- 3 quinary representations $\Rightarrow \mathbb{H}_3$-representable
- 4 quinary representations $\Rightarrow \mathbb{H}_4$-representable
- 5 quinary representations $\Rightarrow \mathbb{H}_6$-representable

where \mathbb{H}_k is partial field: subdeterminants of representation are in $R^* \cup \{0\}$.
Take-home message

Need to study structure and branch width of N-fragile matroids.

(ONGOING WORK WITH CHUN, MAYHEW, WHITTLE: $\{F_7^-, (F_7^-)^*, P_8\}$-fragile, $\{U_{3,5}, U_{2,5}\}$-fragile inside appropriate classes)
Slides, preprints at http://www.cwi.nl/~zwam/
Copies of thesis available!
The End