Beyond Total Unimodularity

Stefan van Zwam

Based on joint work with Rhiannon Hall, Dillon Mayhew, Rudi Pendavingh, and Geoff Whittle

OR Seminar, Maastricht University, February 16, 2011
An optimization problem
An optimization problem

minimize $2x_{11} + 3x_{12} + 4x_{13} + 2x_{21} + 2x_{22} + 8x_{23}$

such that

$$
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_{11} \\
x_{12} \\
x_{13} \\
x_{21} \\
x_{22} \\
x_{23}
\end{bmatrix}
=
\begin{bmatrix}
4 \\
6 \\
2 \\
5 \\
3
\end{bmatrix}
$$
An optimization problem
An optimization problem

Theorem.
If matrix *totally unimodular*, then integer optimal solution.
Totally unimodular matrices

Definition.
A matrix is *totally unimodular* if for every square submatrix D

$$\det(D) \in \{-1, 0, 1\}$$
Testing for total unimodularity

Theorem (Truemper 1982).
There is a polynomial-time algorithm to test if a matrix A over \mathbb{R} is totally unimodular.
Testing for total unimodularity

Theorem (Truemper 1982).
There is a polynomial-time algorithm to test if a matrix A over \mathbb{R} is totally unimodular.

Main ingredient:
Seymour’s Decomposition Theorem for Regular Matroids(1980).
Overview

Total unimodularity
and its (im)possible generalizations:

I. Matroids and representations
II. Seymour’s Decomposition Theorem
III. Excluded minors
Part I
Matroids and representations
Matroids
Matroids
Matroids
Matroid axioms

Definition.
Given

- E: finite set
- \mathcal{I}: collection of subsets

such that

- $\emptyset \in \mathcal{I}$
- $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$
- $I, J \in \mathcal{I}$ and $|I| < |J|$, then

 $$\exists e \in J - I \text{ such that } I \cup \{e\} \in \mathcal{I}$$

Then $M = (E, \mathcal{I})$ is a matroid.
Example: the Fano matroid

- $E = \{ \text{points} \}$
- $\mathcal{I} = \{ X \subseteq E \text{ in general position} \}$
Example: the Fano matroid

- $E = \{\text{points}\}$
- $\mathcal{I} = \{X \subseteq E \text{ in general position}\}$
Example: the Fano matroid

- $E = \{ \text{points} \}$
- $\mathcal{I} = \{ X \subseteq E \text{ in general position} \}$
Example: the Fano matroid

- $E = \{ \text{points} \}$
- $\mathcal{I} = \{ X \subseteq E \text{ in general position} \}$
Representations

Definition.
A representation of M over field \mathbb{F} is a dependency-preserving map

$$A : E(M) \rightarrow \mathbb{F}^r.$$
Example: the Fano matroid

- $E = \{ \text{points} \}$
- $\mathcal{I} = \{ X \subseteq E \text{ in general position} \}$
Example: the Fano matroid

\[
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} -
\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix} -
\begin{bmatrix}
0 \\
1 \\
1
\end{bmatrix} = -
\begin{bmatrix}
0 \\
0 \\
2
\end{bmatrix}
\]
Representations

Definition.
A representation of M over field \mathbb{F} is a dependency-preserving map

$$A : E(M) \rightarrow \mathbb{F}^r.$$

View A as $r \times E$ matrix!
Regular matroids

Theorem (Tutte 1958).
Equivalent for a matroid M:

- M representable over all fields
Regular matroids

Theorem (Tutte 1958).
Equivalent for a matroid M:

- M representable over all fields
- M representable over $GF(2)$ and $GF(3)$
Regular matroids

Theorem (Tutte 1958).
Equivalent for a matroid M:

- M representable over all fields
- M representable over GF(2) and GF(3)
- M has totally unimodular representation over \mathbb{R}
Regular matroids

Theorem (Tutte 1958).
Equivalent for a matroid M:

- M representable over all fields
- M representable over GF(2) and GF(3)
- M has totally unimodular representation over \mathbb{R}

Such matroids are called regular.
and beyond

Theorem (Whittle 1997).
Equivalent for a matroid M:

- M representable over all fields with characteristic $\neq 2$
and beyond

Theorem (Whittle 1997).
Equivalent for a matroid M:

- M representable over all fields with characteristic $\neq 2$
- M representable over GF(3) and GF(5)
... and beyond

Theorem (Whittle 1997). Equivalent for a matroid M:

- M representable over all fields with characteristic $\neq 2$
- M representable over $\text{GF}(3)$ and $\text{GF}(5)$
- M has dyadic representation over \mathbb{R}
... and beyond

Theorem (Whittle 1997).
Equivalent for a matroid M:

- M representable over all fields with characteristic $\neq 2$
- M representable over $GF(3)$ and $GF(5)$
- M has dyadic representation over \mathbb{R}

A matrix is dyadic if every subdeterminant is in

$$\{\pm 2^k : k \in \mathbb{Z}\} \cup \{0\}.$$
... and beyond

Theorem (Whittle 1997). Equivalent for a matroid M:

- M representable over all fields except, perhaps, GF(2)
... and beyond

Theorem (Whittle 1997).
Equivalent for a matroid M:

- M representable over all fields except, perhaps, $\text{GF}(2)$
- M representable over $\text{GF}(3)$, $\text{GF}(4)$, $\text{GF}(5)$
... and beyond

Theorem (Whittle 1997).
Equivalent for a matroid M:

- M representable over all fields except, perhaps, $GF(2)$
- M representable over $GF(3)$, $GF(4)$, $GF(5)$
- M representable over $GF(3)$, $GF(8)$
and beyond

Theorem (Whittle 1997).
Equivalent for a matroid M:

- M representable over all fields except, perhaps, $GF(2)$
- M representable over $GF(3)$, $GF(4)$, $GF(5)$
- M representable over $GF(3)$, $GF(8)$
- M has near-regular representation over $\mathbb{Q}(\alpha)$
... and beyond

Theorem (Whittle 1997).
Equivalent for a matroid M:

- M representable over all fields except, perhaps, $\text{GF}(2)$
- M representable over $\text{GF}(3)$, $\text{GF}(4)$, $\text{GF}(5)$
- M representable over $\text{GF}(3)$, $\text{GF}(8)$
- M has *near-regular* representation over $\mathbb{Q}(\alpha)$

A matrix is *near-regular* if every subdeterminant is in

$$\{\pm \alpha^k(1 - \alpha)^l : k, l \in \mathbb{Z}\} \cup \{0\}.$$
...and beyond

Theorem (Vertigan, unpublished; Pendavingh, vZ 2010).
Equivalent for a matroid M:

- M representable over $\text{GF}(4)$, $\text{GF}(5)$
- M has *golden ratio* representation over \mathbb{R}

A matrix is *golden ratio* if every subdeterminant is in

$$\{\pm \tau^k : k \in \mathbb{Z}\} \cup \{0\}$$

where τ is the *golden ratio*, i.e. $\tau^2 - \tau - 1 = 0$.
Part II

Seymour’s Decomposition Theorem
Operations

Elementary operations that preserve T.U.:

- Scale rows and columns by -1
- Permute rows and columns
- Row-reduce a column to an identity vector

\[
\begin{bmatrix}
\alpha & c \\
\hline
b & D
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & \alpha^{-1}c \\
\hline
0 & D - b\alpha^{-1}c
\end{bmatrix}
\]
Operations
Dualizing:

\[[I \ A] \rightarrow [\ -A^T \ I']\]
Operations

Operations that preserve T.U.: 1-sums

\[A_1 \oplus_1 A_2 = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} \]
Operations

Operations that preserve T.U.: 2-sums

\[
\begin{bmatrix}
A_1 \\
\vdots \\
0 \\
a_1
\end{bmatrix}
\oplus_2
\begin{bmatrix}
1 & a_2 \\
0 & A_2 \\
0 & 0
\end{bmatrix}
=
\begin{bmatrix}
A_1 & 0 \\
a_1 & a_2 \\
0 & A_2
\end{bmatrix}
\]
Operations

Operations that preserve T.U.: 3-sums

\[
\begin{bmatrix}
A_1 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 \\
\alpha_1 & 1 & 1 & 0 \\
\beta_1 & 1 & 0 & 1
\end{bmatrix}
\oplus_3
\begin{bmatrix}
1 & 1 & 0 & a_2 \\
1 & 0 & 1 & b_2 \\
0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
= \begin{bmatrix}
A_1 & 0 \\
\alpha_1 & a_2 \\
\beta_1 & b_2 \\
0 & A_2
\end{bmatrix}
\]
3-sums geometrically
Have cement, need bricks

Definition.
A matroid is *graphic* if its independent sets are the edge sets of forests of a graph G.
Have cement, need bricks

Definition.
A matroid is *graphic* if its independent sets are the edge sets of forests of a graph G.

Representation: incidence matrix. Entries in \{0, 1, -1\} with

- At most two nonzeroes in each column
- If two, then one 1 and one -1
Have cement, need bricks

Definition.
A matroid is *graphic* if its independent sets are the edge sets of forests of a graph G.

Representation: incidence matrix. Entries in $\{0, 1, -1\}$ with

- At most two non-zeroes in each column
- If two, then one 1 and one -1

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
-1 & -1 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 1 \\
0 & 1 & 0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 & 1 & -1 \\
\end{bmatrix}
\]
Have cement, need bricks

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
-1 & -1 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 1 \\
0 & 1 & 0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 & 1 & -1
\end{bmatrix}
\]

Theorem.
A graphic matroid is regular.
What else is out there?

Theorem (Seymour 1980).
Suppose M, regular, can *not* be obtained from graphic matroids by *dualizing*, 1-sums, 2-sums. Then M has one of the following as minor:

R_{10}, R_{12}
The case R_{10}

$$\begin{bmatrix}
-1 & 1 & 0 & 0 & 0 & 1 \\
1 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 & 1 \\
1 & 0 & 0 & 1 & -1 \\
\end{bmatrix}$$

Theorem. If M regular, contains R_{10}, not equal to R_{10}, it can be written as a 1- or 2-sum.
The case R_{12}

$$
\begin{bmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & -1 & -1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & -1 \\
\end{bmatrix}
$$

Theorem. If M regular and contains R_{12}, it can be written as a 3-sum.
Seymour’s Decomposition Theorem

Theorem (Seymour 1980).
Every regular matroid can be obtained from graphic ones and R_{10} by dualizing, k-sums for $k = 1, 2, 3$.
Seymour’s Decomposition Theorem

Theorem (Seymour 1980).
Every regular matroid can be obtained from graphic ones and R_{10} by dualizing, k-sums for $k = 1, 2, 3$.

A matroid can be tested for being graphic in polynomial time.
Seymour’s Decomposition Theorem

Theorem (Seymour 1980).
Every regular matroid can be obtained from graphic ones and R_{10} by dualizing, k-sums for $k = 1, 2, 3$.

A matroid can be tested for being graphic in polynomial time.

Theorem (Truemper 1982).
A matroid can be tested for being regular in polynomial time.
... and beyond?

Problem.
Can a matroid be tested for being *near-regular* in polynomial time?

Problem.
Is there a satisfying decomposition theorem for near-regular matroids?
Recognizing signed-graphic matroids

Definition.
A matroid is signed-graphic ⇔ representation over GF(3) with at most 2 nonzero entries per column.
Recognizing signed-graphic matroids

Definition.
A matroid is signed-graphic ⇔ representation over GF(3) with at most 2 nonzero entries per column.

Theorem (Geelen; Mayhew – unpublished).
There is no polynomial-time algorithm to test if a matroid, given by rank oracle, is signed-graphic.
Recognizing signed-graphic matroids

Definition.
A matroid is *signed-graphic* ⇔ representation over $GF(3)$ with at most 2 nonzero entries per column.

Theorem (Geelen; Mayhew – unpublished).
There is no polynomial-time algorithm to test if a matroid, given by rank oracle, is signed-graphic.

But...
Recognizing signed-graphic matroids

Definition.
A matroid is signed-graphic \(\iff\) representation over \(\text{GF}(3)\) with at most 2 nonzero entries per column.

Theorem (Geelen; Mayhew – unpublished).
There is no polynomial-time algorithm to test if a matroid, given by rank oracle, is signed-graphic.

But...
What if \(M\) is given as GF(3)-matrix?
Recognizing signed-graphic matroids

‘Theorem’ (Musitelli 2008).
Polynomial-time algorithm to decide if

\[A = D^{-1}A' \]

with \(A' \) dyadic signed-graphic and \(D \) invertible submatrix of \(A' \)
Recognizing near-regular-graphic matroids

What about decomposition?

Natural condition for decomposition:

- No basic class contains all graphic \textit{and} all co-graphic matroids.

\textbf{Corollary (Mayhew, Whittle, vZ 2011).}
Any natural decomposition of the near-regular matroids must employ 4-sums.
What about decomposition?

Theorem (Mayhew, Whittle, vZ 2011).

M_1, M_2 graphic matroids. Can build internally 4-connected near-regular matroid having both M_1 and dual of M_2 in it.

$$A_{12} = \begin{bmatrix}
 d & e & f & 4 & 5 & 6 \\
 a & 1 & 0 & 1 & 1 & 1 & 0 \\
 b & 0 & -1 & 1 & 1 & 0 & \alpha \\
 c & 1 & 1 & 0 & 0 & \alpha & -\alpha \\
 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
 2 & 0 & 0 & 0 & 0 & 1 & -1 \\
 3 & 0 & 0 & 0 & 1 & 1 & 0
\end{bmatrix}$$
Part III
Excluded minors
Minors: abstract definition

- **Deletion**: \(M \setminus e := (E - \{e\}, \{I \in \mathcal{I} : e \notin I\}) \)
- **Contraction**: \(M/e := (E - \{e\}, \{I : I \cup \{e\} \in \mathcal{I}\}) \)
- **Minors**: Obtained from sequence of such steps
Minors: abstract definition

- **Deletion**: \(M \setminus e := (E - \{e\}, \{I \in \mathcal{I} : e \notin I\}) \)
- **Contraction**: \(M/e := (E - \{e\}, \{I : I \cup \{e\} \in \mathcal{I}\}) \)
- **Minors**: Obtained from sequence of such steps
 - Generate partial order
 - Preserve representability
Excluded minors
Regular matroids

Theorem (Tutte 1958):
Exactly 3 excluded minors for regular matroids, namely

\[
\begin{align*}
\{ & , \quad \begin{array}{c} \text{circle} \\ \text{triangle} \end{array}, \quad \left(\begin{array}{c} \text{circle} \\ \text{triangle} \end{array} \right) \ast \end{align*}
\]
Near-regular matroids

Theorem (Hall, Mayhew, vZ 2011):
Exactly 10 excluded minors for near-regular matroids,
namely

\[
\{ \cdots, \triangle, (\triangle)^*, m, (\square)^*, (\square)^{\Delta Y}\}.
\]
...and beyond?

Problem.
Is there a finite number of excluded minors for dyadic matroids?
...and beyond?

Problem.
Is there a finite number of excluded minors for dyadic matroids?

Matroid Minors Project (Geelen, Gerards, Whittle, in progress).
Yes! (And an algorithm too!)
Where to learn more?

- Matroïden en hun representaties, Nieuw Archief voor Wiskunde, December 2010

- (With Rhiannon Hall and Dillon Mayhew) The excluded minors for near-regular matroids, European Journal of Combinatorics, in press, 2011

Slides, preprints at http://www.cwi.nl/~zwam/

The End