Beyond Total Unimodularity

Stefan van Zwam

Department of Mathematics
Princeton University

Based on joint work with Rhiannon Hall, Dillon Mayhew, Rudi Pendavingh, and Geoff Whittle

Combinatorics Seminar, Binghamton University, NY
March 11, 2013
The plan:

- Matroid Representations, Whittle’s Classes
- Basis Counting
- Decomposition
- Excluded Minors
Part I
Matroid Representations, Whittle’s Classes
Representations

Definition.
A representation of M over field \mathbb{F} is a dependency-preserving map

$$A : E(M) \rightarrow \mathbb{F}^r.$$
Example: the Fano matroid
Example: the Fano matroid
Example: the Fano matroid

\[
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} - \begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix} - \begin{bmatrix}
0 \\
1 \\
1
\end{bmatrix} = -\begin{bmatrix}
0 \\
0 \\
2
\end{bmatrix}
\]
Representations

Definition.

A representation of M over field \mathbb{F} is a dependency-preserving map

$$A : E(M) \to \mathbb{F}^r.$$

- View A as matrix with columns labeled by E
- Write $M = M[A]$
Regular matroids

Theorem (Tutte 1958).
Equivalent for a matroid M:

- M representable over all fields
- M representable over $\text{GF}(2)$ and $\text{GF}(3)$
- M has totally unimodular representation over \mathbb{R}

A matrix is *totally unimodular* if every sub-determinant is in

$$\{\pm 1\} \cup \{0\}.$$

Such matroids are called *regular*.
An optimization problem
An optimization problem

minimize $2x_{11} + 3x_{12} + 4x_{13} + 2x_{21} + 2x_{22} + 8x_{23}$

such that

$$
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_{11} \\
x_{12} \\
x_{13} \\
x_{21} \\
x_{22} \\
x_{23}
\end{bmatrix}
=
\begin{bmatrix}
4 \\
6 \\
2 \\
5 \\
3
\end{bmatrix}
$$
An optimization problem
An optimization problem

Theorem.
If constraint matrix *totally unimodular*, then integer optimal solution.
... and beyond

Theorem (Whittle 1997).
Equivalent for a matroid M:

- M representable over all fields with characteristic $\neq 2$
- M representable over $\text{GF}(3)$ and $\text{GF}(5)$
- M has totally dyadic representation over \mathbb{R}

A matrix is totally dyadic if every subdeterminant is in

$$\{\pm 2^k : k \in \mathbb{Z}\} \cup \{0\}.$$
... and beyond

Theorem (Whittle 1997).
Equivalent for a matroid M:

- M representable over all fields except, perhaps, GF(2)
- M representable over GF(3), GF(4), GF(5)
- M representable over GF(3), GF(8)
- M has near-regular representation over $\mathbb{Q}(\alpha)$

A matrix is near-regular if every subdeterminant is in

$$\{\pm \alpha^k (1 - \alpha)^l : k, l \in \mathbb{Z}\} \cup \{0\}.$$
... and beyond

Theorem (Vertigan, unpublished; Pendavingh, vZ 2010).
Equivalent for a matroid M:

- M representable over GF(4), GF(5)
- M has *totally golden ratio* representation over \mathbb{R}

A matrix is *totally golden ratio* if every sub-determinant is in

$$\{\pm \tau^k : k \in \mathbb{Z}\} \cup \{0\}$$

where τ is the *golden ratio*, i.e. $\tau^2 - \tau - 1 = 0$.
Part II

Basis counting
Kirchhoff’s Matrix-Tree Theorem

Theorem (Kirchhoff)
Let A be T.U. matrix. Then
\[
\det(AA^T) = \# \{B \text{ basis of } M[A]\}
\]

Theorem (Cauchy - Binet)
Let A be $r \times s$ matrix; B $s \times r$ matrix. Then
\[
\det(AB) = \sum_{|X|=r} \det(A_X) \det(B_X)
\]
...and beyond

- **Complex unimodular:** matrix over \mathbb{C}, nonzero determinants have norm 1.

 $$\det(AA^\dagger) = \# \{ \text{B basis of } M[A] \}$$

- **Quaternionic unimodular?**

Problem: determinants only make sense in commutative rings
What Would Tutte Do?
Chain groups

Definition: R ring, E finite set. Chain group is

$$C \subseteq R^E$$

such that, for $c, d \in C$ and $r \in R$

- $0 \in C$
- $c + d \in C$
- $rc \in C$

Definition: Support of a chain c:

$$\|c\| := \{e \in E : c_e \neq 0\}$$

Definition: Elementary chain: $c \neq 0$, inclusionwise minimal support.
Chain groups

Definition: Skew partial field $\mathbb{P} = (R, G)$

- R ring
- $G \subseteq R^*$ group
- $-1 \in G$

Definition: G-primitive chain: $c \in (G \cup \{0\})^E$.

Definition: Chain group is \mathbb{P}-chain group if, for all $c \in C$ elementary,

$$c = rd$$

where $r \in R$ and $d \in C$ is G-primitive.
Example:

- Regular partial field: $\mathbb{U}_0 = (R, G)$ with
 - $R = \mathbb{Z}$
 - $G = \{-1, 1\}$
- \mathbb{Z}-span of rows of T.U. matrix is \mathbb{U}_0-chain group
Chain groups

Theorem (Pendavingh, vZ 2009): For a \mathcal{P}-chain group \mathcal{C}, define

$$\mathcal{C}^* := \{\|c\| : c \in \mathcal{C}, \text{elementary}\}$$

Then \mathcal{C}^* is set of cocircuits of a matroid, $\mathcal{M}(\mathcal{C})$.

(Co)circuit axioms

\mathcal{C}^* is set of cocircuits of a matroid if and only if

- $\emptyset \notin \mathcal{C}^*$
- $C, D \in \mathcal{C}^*$ and $C \subseteq D$ then $C = D$
- $C, D \in \mathcal{C}^*, C \neq D, e \in C \cap D$, then $(C \cup D) - e$ contains a cocircuit
Why all this trouble?

- Because we can
- Can represent some matroids that have no representation over any (skew) field
- Captures “multilinear representations” from coding theory
- *Quaternionic Unimodular Matroids:*
 - $R = \mathbb{H}$, the quaternions
 - $G = \{x \in \mathbb{H} : \|x\| = 1\}$
Cauchy-binet extended

Theorem (Pendavingh, vZ 2011+)

Let A be $r \times s$ matrix over \mathbb{H}. Then

$$\delta(AA^\dagger) = \sum_{|X|=r} \delta(A_X)\delta(A_X^\dagger)$$

where

$$\delta(D) := \sqrt{|\det(z_2(\varphi(D)))|}$$
Basis counting, extended

\[\delta(AA^+) = \# \{ B \text{ basis of } M[A] \} \]

\[P_A := A^+ (AA^+)^{-1} A \]

\[\delta(P_A[F,F]) = \frac{\# \{ B \text{ basis, } F \subseteq B \}}{\# \{ B \text{ basis} \}} \]
Some open problems

Let \mathcal{P} be skew partial field.

- Are \mathcal{P}-representable matroids algebraic?
- Does Ingleton’s Inequality hold?
- Are there Q.U. matroids not representable over a commutative field?
- Can we get all Q.U. matroids with just a finite subgroup of $\{x \in \mathbb{H} : \|x\| = 1\}$?
- Do Q.U. matroids have the half-plane property?
Part III
Structure
Operations

Elementary operations that preserve T.U.:

- Scale rows and columns by \(-1\)
- Permute rows and columns
- Row-reduce a column to an identity vector

\[
\begin{pmatrix}
\alpha & c \\
b & D
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & \alpha^{-1}c \\
0 & D - b\alpha^{-1}c
\end{pmatrix}
\]
Operations
Dualizing:

\[[I \ A] \rightarrow [-A^T \ I']\]
Operations
Operations that preserve T.U.: 1-sums

\[A_1 \oplus_1 A_2 = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} \]
Operations

Operations that preserve T.U.: 2-sums

\[
\begin{bmatrix}
A_1 & 0 \\
\vdots & \vdots \\
a_1 & 0
\end{bmatrix}
\oplus_2
\begin{bmatrix}
1 & a_2 \\
0 & A_2
\end{bmatrix}
=
\begin{bmatrix}
A_1 & 0 \\
a_1 & a_2 \\
0 & A_2
\end{bmatrix}
\]
3-sums
Have cement, need bricks

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
-1 & -1 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 1 \\
0 & 1 & 0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 & 1 & -1 \\
\end{bmatrix}
\]

Theorem.
A graphic matroid is regular.
The case R_{10}

$$
\begin{bmatrix}
-1 & 1 & 0 & 0 & 1 \\
1 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 & 1 \\
1 & 0 & 0 & 1 & -1
\end{bmatrix}
$$

Theorem. If M regular, contains R_{10}, not equal to R_{10}, it can be written as a 1- or 2-sum.
Seymour’s Decomposition Theorem

Theorem (Seymour 1980).
Every regular matroid can be obtained from graphic ones and R_{10} by dualizing, k-sums for $k = 1, 2, 3$.

A matroid can be tested for being graphic in polynomial time.

Theorem (Truemper 1982).
A matroid can be tested for being regular in polynomial time.
... and beyond?

Problem.
Can a matroid be tested for being *near-regular* in polynomial time?

Problem.
Is there a satisfying decomposition theorem for near-regular matroids?
Recognizing signed-graphic matroids

Definition.
A matroid is signed-graphic ⇔ representation over GF(3) with at most 2 nonzero entries per column.

Theorem (Geelen; Mayhew – unpublished).
There is no polynomial-time algorithm to test if a matroid, given by rank oracle, is signed-graphic.

But...
What if M is given as GF(3)-matrix?
What about decomposition?

Natural condition for decomposition:

- No basic class contains all graphic and all co-graphic matroids.

Corollary (Mayhew, Whittle, vZ 2011).

Any natural decomposition of the near-regular matroids must employ 4-sums.
What about decomposition?

Theorem (Mayhew, Whittle, vZ 2011).

M_1, M_2 graphic matroids. Can build internally 4-connected near-regular matroid having both M_1 and dual of M_2 in it.

\[
A_{12} = \begin{bmatrix}
 a & b & c & 1 & 2 & 3 \\
 d & e & f & 4 & 5 & 6 \\
 1 & 0 & 1 & 1 & 1 & 0 \\
 0 & -1 & 1 & 1 & 0 & \alpha \\
 1 & 1 & 0 & 0 & \alpha & -\alpha \\
 0 & 0 & 0 & 1 & 0 & 1 \\
 0 & 0 & 0 & 0 & 1 & -1 \\
 0 & 0 & 0 & 1 & 1 & 0 \\
\end{bmatrix}
\]
Part IV

Excluded minors
Kuratowski’s Theorem

Theorem.
Exactly two excluded minors for planar graphs:
Contraction
Contraction
Contraction
Rota’s Conjecture

Theorem (Tutte 1958):
Exactly 1 excluded minor for

\[M : E(M) \to \text{GF}(2) \]

namely
Rota’s Conjecture

Conjecture (Rota 1971): \mathbb{F} finite, then $\exists k = k(\mathbb{F})$: exactly k excluded minors for

$$\left\{ M : E(M) \to \mathbb{F} \right\}$$

<table>
<thead>
<tr>
<th>\mathbb{F}</th>
<th>GF(2)</th>
<th>GF(3)</th>
<th>GF(4)</th>
<th>GF(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>$\geq 564^a$</td>
</tr>
</tbody>
</table>

aMayhew, Royle 2009
Regular matroids

Theorem (Tutte 1958):
Exactly 3 excluded minors for

\[\left\{ M : E(M) \to \{\text{GF}(2), \text{GF}(3), \text{GF}(4), \text{GF}(5), \text{GF}(7), \ldots\} \right\} \]

namely

\[\left\{ \text{triangle}, \text{triangle}, \left(\text{triangle} \right)^* \right\} \]
Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for

\[M : E(M) \rightarrow \{ \text{GF}(3), \text{GF}(4), \text{GF}(5), \text{GF}(7), \ldots \} \]
namely

\[
\left\{ \ldots, \cdot, \cdot, \text{triangle}, (\text{circle})^*, \right. \\
\left. \text{triangle}, (\text{circle})^*, \Delta Y \right\}
\]
Others?

Sixth-roots-of-unity known.

Major open case: Dyadic matroids.
Slides, papers at
http://www.math.princeton.edu/~svanzwam/

The End