Templates for classes of representable matroids

Stefan van Zwam
Joint work with Kevin Grace

Department of Mathematics
Louisiana State University

Third Pacific Rim Mathematical Organization Congress (PRIMA), Oaxaca, Mexico.
August 14–18, 2017

Research supported by NSF grant 1500343
Part I
Structure of minor-closed classes
Graph Minors Structure Theorem

Theorem (Robertson and Seymour 2003).
Let \(\mathcal{G} \) be proper minor-closed class of graphs. Each \(G \in \mathcal{G} \) admits a *tree-decomposition*, whose parts are almost embeddable in a surface.
Graph Minors Structure Theorem

Theorem (Robertson and Seymour 2003).
Let \mathcal{G} be proper minor-closed class of graphs. Each $G \in \mathcal{G}$ admits a \textit{tree-decomposition}, whose parts are almost embeddable in a surface.

Consequences:

- No infinite antichains of graphs;
- \mathcal{G} has finite set of excluded minors;
- Algorithms.
Matroid minors: the blueprint

Theorem (Seymour 1980).
Let M be a regular matroid. Then M can be constructed from graphic matroids, cographic matroids, and R_{10} through 1-, 2-, 3-sums.
Matroid minors: the blueprint

Theorem (Seymour 1980).
Let M be a regular matroid. Then M can be constructed from graphic matroids, cographic matroids, and R_{10} through 1-, 2-, 3-sums.

Highly connected regular matroids are:

- Graphic matroids
- Cographic matroids

What can happen for other classes?
Matroid Minors Structure Theorem

Hypothesis (Geelen, Gerards, Whittle). Let \mathcal{M} be proper minor-closed class of matroids representable over $\text{GF}(q)$. Each $M \in \mathcal{M}$ admits a tree-decomposition, whose parts are

- almost frame matroids; or
- duals of almost frame matroids; or
- almost representable over a subfield of $\text{GF}(q)$.
Constructions

Even-cycle matroids

\[
\begin{array}{cccc}
* & * & \cdots & * \\
\end{array}
\]

\[\leq 2 \text{ ones per column}\]
Constructions

Grafts

\[
\begin{array}{c|c}
\leq 2 \text{ ones per column} & * \\
\vdots & \\
* & \\
\end{array}
\]
Constructions

Grafts

\[
\begin{array}{c}
\leq 2 \text{ ones per column} \\
\vdots \\
\ast
\end{array}
\]

Close under minors: duals of even-cut matroids (Guenin, Pivotto, Wollan).
Constructions

Almost representable over a subfield
A matroid is GF(q)-regular if it is representable over GF(q^t) for all t ≥ 2.

Theorem (Nelson, vZ 2015)
If M is highly connected and has a large PG(t, q) minor, then equivalent:

• M is GF(q)-regular;
• M is representable over GF(q^2) and GF(q^t) for some t ≥ 3;
• M is a restriction of PG(r − 1, q) or PG(r − 1, q).
Perturbations

Definition.
A rank-$(\leq t)$ perturbation of $M = M[A]$ is the matroid $M[A + P]$, where P has matrix rank $\leq t$.
Perturbations

Definition.
A rank-\((\leq t)\) perturbation of \(M = M[A]\) is the matroid \(M[A + P]\), where \(P\) has matrix rank \(\leq t\).
Matroid Minors Structure Theorem

Hypothesis (Geelen, Gerards, Whittle 2015). Let \mathcal{M} be proper minor-closed class of matroids representable over $GF(q)$. There exist k, t, l such that each \textit{vertically} k-connected $M \in \mathcal{M}$ of size $\geq l$ is

- rank-$(\leq t)$ perturbation of frame matroid; or
- dual of rank-$(\leq t)$ perturbation of frame matroid; or
- rank-$(\leq t)$ perturbation of matroid representable over a subfield.
Templates

Frame template, binary version:

<table>
<thead>
<tr>
<th>X</th>
<th>columns from Λ</th>
<th>0</th>
<th>A_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 2 ones per column</td>
<td>unit columns</td>
<td>rows from Δ</td>
<td></td>
</tr>
</tbody>
</table>
Templates

Frame template, binary version:

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>columns from (\Lambda)</th>
<th>0</th>
<th>(A_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>≤ 2 ones per column</td>
<td>unit columns</td>
<td>rows from (\Delta)</td>
<td></td>
</tr>
</tbody>
</table>

Definition.

\(\mathcal{M}(\Phi) \) is set of matroids built from template \(\Phi \).
Templates

Frame template, binary version:

<table>
<thead>
<tr>
<th></th>
<th>Z</th>
<th>Y₁</th>
<th>Y₀</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>columns from Λ</td>
<td>0</td>
<td></td>
<td>A₁</td>
</tr>
<tr>
<td></td>
<td>≤ 2 ones per column</td>
<td>unit columns</td>
<td>rows from Δ</td>
<td></td>
</tr>
</tbody>
</table>

Definition.
\(\mathcal{M}(Φ) \) is set of matroids built from template \(Φ \).

Perturbation Hypothesis (implicit in GGW ’15)
Every perturbation can be built from a template.
Other hypotheses

Let \mathcal{M} be a minor-closed class of $GF(q)$-representable matroids.

Template List Hypothesis (GGW ’15)

If $\mathcal{M}(\Phi) \subseteq \mathcal{M}$, and highly connected matroids conform or coconform to Φ, then Φ is equivalent to one of finitely many templates.
Other hypotheses

Let \mathcal{M} be a minor-closed class of $\text{GF}(q)$-representable matroids.

Template List Hypothesis (GGW ’15)

If $\mathcal{M}(\Phi) \subseteq \mathcal{M}$, and highly connected matroids conform or coconform to Φ, then Φ is equivalent to one of finitely many templates.

Template Covering Hypothesis (GGW ’15)

All vertically k-connected matroids conform or coconform to a template from this list.
Other hypotheses

Let \(\mathcal{M} \) be a minor-closed class of GF\((q) \)-representable matroids.

Template List Hypothesis (GGW ’15)
If \(\mathcal{M}(\Phi) \subseteq \mathcal{M} \), and highly connected matroids conform or coconform to \(\Phi \), then \(\Phi \) is equivalent to one of finitely many templates.

Template Covering Hypothesis (GGW ’15)
All vertically \(k \)-connected matroids conform or coconform to a template from this list.

Growth Rate Hypothesis (Grace, vZ; based on GGW ’15 and Geelen and Nelson 2015)
The extremal function (growth rate function) of \(\mathcal{M} \) is attained infinitely often by a matroid conforming to a template.
Part II
Applications
Creating an order on templates

Theorem (Grace, vZ 2017).
For every binary frame template Φ, one of the following holds:

- Φ is trivial;
- Φ reduces to Φ_C, Φ_D, Φ_{CD}, Φ_{Y_0}, or Φ_{Y_1};
- For some k, l no simple, vertically k-connected matroid of size $\geq l$ conforms or coconforms to Φ.

<table>
<thead>
<tr>
<th>X</th>
<th>Z</th>
<th>Y_1</th>
<th>Y_0</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>columns from Λ</td>
<td>0</td>
<td></td>
<td>A_1</td>
<td></td>
</tr>
<tr>
<td>≤ 2 ones per column</td>
<td>unit columns</td>
<td>rows from Δ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Creating an order on templates

\[\Phi_0 : \]
\[\leq 2 \text{nonzeroes per col} \]

\[\Phi_D : \]
\[\leq 2 \text{nonzeroes per col} \]

\[\Phi_{C/\Phi_Y} : \]
\[\leq 2 \text{nonzeroes per col} \]

\[\Phi_{CD} : \]
\[\leq 2 \text{nonzeroes per col} \]

\[\Phi_{Y_1} : \]
\[\leq 2 \text{nonzeroes per col} \]

\[\begin{array}{cccc}
1 & \cdots & 1 & 0 \cdots 0 \\
0 & \cdots & 0 & 1 \cdots 1 \end{array} \]

\[\begin{array}{cccc}
1 & \cdots & 1 & 1 \\
1 & \cdots & 1 & 0 \\
1 & \cdots & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
\end{array} \]
Applications: 1-flowing matroids

Conjecture (Seymour 1981).
The excluded minors for 1-flowing matroids are $U_{2,4}$, $AG(3, 2)$, T_{11}, T_{11}^*.
Applications: 1-flowing matroids

Conjecture (Seymour 1981).
The excluded minors for 1-flowing matroids are $U_{2,4}$, $AG(3, 2)$, T_{11}, T_{11}^*.

Theorem (Grace, vZ 2017).
The template list for 1-flowing matroids is \(\{ \Phi_0 \} \).
Applications: 1-flowing matroids

Conjecture (Seymour 1981).
The excluded minors for 1-flowing matroids are $U_{2,4}$, $AG(3, 2)$, T_{11}, T_{11}^*.

Theorem (Grace, vZ 2017).
The template list for 1-flowing matroids is $\{\Phi_0\}$.

Corollary (Grace, vZ 2017).
Subject to Template Covering Hypothesis, a counterexample to Seymour’s 1-Flowing Conjecture has low-order separation or small size.
Applications: fewer excluded minors

Theorem (Wagner).
A 3-connected graph on ≥ 11 edges is planar if and only if it has no $K_{3,3}$-minor.
Applications: fewer excluded minors

Theorem (Wagner).
A 3-connected graph on ≥ 11 edges is planar if and only if it has no $K_{3,3}$-minor.

Theorem (Grace, vZ 2017+).
Subject to Template Covering Hypothesis, a highly connected binary matroid is in $EX(PG(3, 2) \setminus e, M^*(K_6), L_{11})$ if and only if it is even-cycle.
Applications: fewer excluded minors

Theorem (Wagner).
A 3-connected graph on \(\geq 11 \) edges is planar if and only if it has no \(K_{3,3} \)-minor.

Theorem (Grace, vZ 2017+).
Subject to Template Covering Hypothesis, a highly connected binary matroid is in \(EX(PG(3, 2) \setminus e, M^*(K_6), L_{11}) \) if and only if it is even-cycle.

Similar results for:
- Even-cycle with blocking pair
- Even-cut
- Ternary signed-graphic (work in progress)
- Dyadic (work in progress)
Applications: growth rates

Definition.
Extremal function $h_M(r)$ is maximum number of elements in simple, rank-r matroid in M.
Applications: growth rates

Definition.
Extremal function $h_M(r)$ is maximum number of elements in simple, rank-r matroid in M.

Theorem (Grace, vZ 2017).
Subject to Growth Rate Hypothesis:

$$h_{EX}(PG(3,2)) \approx r^2 - r + 1.$$
Applications: growth rates

Definition.
Extremal function $h_M(r)$ is maximum number of elements in simple, rank-r matroid in M.

Theorem (Grace, vZ 2017).
Subject to Growth Rate Hypothesis:

$$h_{EX(PG(3,2))} \approx r^2 - r + 1.$$

Theorem (Grace, work in progress).
Let \mathcal{G} be class of Golden Ratio matroids. Subject to Growth Rate Hypothesis:

$$h_{\mathcal{G}} \approx \binom{r + 3}{2} - 5,$$

verifying a conjecture by Archer (2005) for sufficiently high ranks.
Applications: 2-regular matroids

Theorem (Grace, work in progress).
Let M be highly connected, representable over GF(4) and fields of all characteristics. Then:

- M is representable over all fields with ≥ 4 elements (2-regular); or
- M is representable over GF(4) and GF(q) for $q \geq 7$; or
- M is Golden Ratio
Applications: 2-regular matroids

Theorem (Grace, work in progress).
Let M be highly connected, representable over GF(4) and fields of all characteristics. Then:

- M is representable over all fields with ≥ 4 elements (2-regular); or
- M is representable over GF(4) and GF(q) for $q \geq 7$; or
- M is Golden Ratio

Note: without connectivity assumption, infinitely many classes (Whittle 2005).
Applications: approach

Verify Template List Hypothesis for a class \mathcal{M}: explicitly find all templates Φ such that $\mathcal{M}(\Phi) \subseteq \mathcal{M}$. To rule out a potential template:

- Show $\mathcal{M}(\Phi) \subseteq \mathcal{M}(\Phi')$ with Φ' in list; or
- Show the matroids conforming to the template are not highly connected; or
- Find certificate placing it outside \mathcal{M}.

Typically, try to build an excluded minor for \mathcal{M} using Φ.
Applications: approach

Verify Template List Hypothesis for a class \mathcal{M}: explicitly find all templates Φ such that $\mathcal{M}(\Phi) \subseteq \mathcal{M}$. To rule out a potential template:

- Show $\mathcal{M}(\Phi) \subseteq \mathcal{M}(\Phi')$ with Φ' in list; or
- Show the matroids conforming to the template are not highly connected; or
- Find certificate placing it outside \mathcal{M}.

Typically, try to build an excluded minor for \mathcal{M} using Φ.

Note: This procedure yields theorems, independent of hypotheses!
Part III

A Speed Bump
Trouble in template paradise?

Theorem? (Geelen, Gerards, Whittle 2015). Let \mathcal{M} be proper minor-closed class of matroids representable over $\text{GF}(q)$. There exist k, t, l such that each vertically k-connected $M \in \mathcal{M}$ of size $\geq l$ is

- rank-$(\leq t)$ perturbation of frame matroid; or
- dual of rank-$(\leq t)$ perturbation of frame matroid; or
- rank-$(\leq t)$ perturbation of matroid represented over a subfield.
The counterexample

Let \mathcal{D} be class of *dyadic* matroids (i.e. representable over GF(3) and GF(5)).

‘Theorem’ (Grace, vZ 2017+).

For each k, t, l there exists a vertically k-connected dyadic matroid M on $\geq l$ elements, such that **NO** rank-$(\leq t)$ perturbation is a represented frame matroid or the dual of a represented frame matroid.
The counterexample
Let \mathcal{D} be class of dyadic matroids (i.e. representable over GF(3) and GF(5)).

‘Theorem’ (Grace, vZ 2017+).
For each k, t, l there exists a vertically k-connected dyadic matroid M on $\geq l$ elements, such that NO rank-$(\leq t)$ perturbation is a represented frame matroid or the dual of a represented frame matroid.

Consolation:

- Vertical k-connectivity and cographic don’t mix;
- Most results saved by going to cyclic k-connectivity when “almost dual of frame”;
- Everything should hold when the word “vertically” is struck out.
Slides, articles at
http://www.math.lsu.edu/~svanzwam/

The End

Stefan van Zwam
When Matroids are Highly Connected