Infinite trees of matroids

Nathan Bowler1

January 2013

1Joint work with Johannes Carmesin
Examples of infinite matroids

Two matroids from a (locally finite) graph G, given in terms of their circuits:

Finite cycle matroid $M_{FC}(G)$: finite cycles
Topological cycle matroid $M_{C}(G)$: topological circles in $|G|$
Examples of infinite matroids

Two matroids from a (locally finite) graph G, given in terms of their circuits:

Finite cycle matroid $M_{FC}(G)$: finite cycles
Topological cycle matroid $M_C(G)$: topological circles in $|G|$
Examples of infinite matroids

Two matroids from a (locally finite) graph G, given in terms of their circuits:

- **Finite cycle matroid** $M_{FC}(G)$: finite cycles
- **Topological cycle matroid** $M_{C}(G)$: topological circles in $|G|$
Examples of infinite matroids

Two matroids from a (locally finite) graph G, given in terms of their circuits:

Finite cycle matroid $M_{FC}(G)$: finite cycles
Topological cycle matroid $M_{C}(G)$: topological circles in $|G|$
Examples of infinite matroids

Two matroids from a (locally finite) graph G, given in terms of their circuits:

- Finite cycle matroid $M_{FC}(G)$: finite cycles
- Topological cycle matroid $M_{C}(G)$: topological circles in $|G|$
Examples of infinite matroids

Two matroids from a (locally finite) graph G, given in terms of their circuits:

Finite cycle matroid $M_{FC}(G)$: finite cycles
Topological cycle matroid $M_C(G)$: topological circles in $|G|$
Examples of infinite matroids

Two matroids from a (locally finite) graph G, given in terms of their circuits:

- Finite cycle matroid $M_{FC}(G)$: finite cycles
- Topological cycle matroid $M_{C}(G)$: topological circles in $|G|$
Axioms for finite matroids (Minty)

\mathcal{C} and \mathcal{D} are respectively the sets of circuits and of cocircuits of a matroid on a finite set E if and only if

(C1) $\emptyset \notin \mathcal{C}$

(C2) No proper subset of an element of \mathcal{C} is in \mathcal{C}

(C1*) $\emptyset \notin \mathcal{D}$

(C2*) No proper subset of an element of \mathcal{D} is in \mathcal{D}

(O1) For $C \in \mathcal{C}$ and $D \in \mathcal{D}$ the set $C \cap D$ never has just 1 element.

(O2) For any partition of E as $P \cup Q \cup \{e\}$, either there is $C \in \mathcal{C}$ with $e \in C \subseteq P + e$ or else there is $D \in \mathcal{D}$ with $e \in D \subseteq Q + e$.

\Box
Axioms for countable tame matroids

C and D are respectively the sets of circuits and of cocircuits of a tame matroid on a countable set E if and only if

(C1) $\emptyset \not\in C$

(C2) No proper subset of an element of C is in C

(C1*) $\emptyset \not\in D$

(C2*) No proper subset of an element of D is in D

(O1) For $C \in C$ and $D \in D$ the set $C \cap D$ never has just 1 element.

(O2) For any partition of E as $P \dot\cup Q \dot\cup \{e\}$, either there is $C \in C$ with $e \in C \subseteq P + e$ or else there is $D \in D$ with $e \in D \subseteq Q + e$.

(T) $C \cap D$ is finite for any $C \in C$ and $D \in D$.

Theorem (Martin)
If a set Φ is Borel then it is determined.
Gluing matroids together

Theorem (Martin)

If a set Φ is Borel then it is determined.
Gluing matroids together
Gluing matroids together

Theorem (Martin)

If a set Φ is Borel then it is determined.
Gluing matroids together

Theorem (Martin)
If a set Φ is Borel then it is determined.
Gluing matroids together

Theorem (Martin)
If a set Φ is Borel then it is determined.
Gluing matroids together

Theorem (Martin)

If a set Φ is Borel then it is determined.
Theorem

If the set Ψ is Borel then $M_\Psi(T)$ is a matroid.
Theorem (Martin)

If a set Φ is Borel then it is determined.
Gluing matroids together

Theorem

If the set Ψ is Borel then $M_\Psi(\mathcal{T})$ is a matroid.
Gluing matroids together
Definition

Let G be a locally finite graph. A G-matroid is a tame matroid all of whose circuits are topological circles of G and all of whose cocircuits are bonds of G.

G-matroids are Ψ-matroids.
Definition

Let G be a locally finite graph. A *G-matroid* is a tame matroid all of whose circuits are topological circles of G and all of whose cocircuits are bonds of G.

G-matroids are Ψ-matroids.
G-matroids are Ψ-matroids.

Definition
Let G be a locally finite graph. A G-matroid is a tame matroid all of whose circuits are topological circles of G and all of whose cocircuits are bonds of G.
G-matroids are Ψ-matroids.

Definition
Let G be a locally finite graph. A G-matroid is a tame matroid all of whose circuits are topological circles of G and all of whose cocircuits are bonds of G.

Theorem
There is a decomposition of G into a tree T of finite graphs such that every G-matroid is of the form $M_\Psi(T)$.
Rebuilding matroids out of their 3-connected parts

Theorem (Tutte)
Any finite matroid can be canonically represented as a 2-sum of a tree of matroids, each of which is either 3-connected, a single circuit or a single cocircuit.
Rebuilding matroids out of their 3-connected parts

Theorem (Tutte)

Any finite matroid can be canonically represented as a 2-sum of a tree of matroids, each of which is either 3-connected, a single circuit or a single cocircuit.

Theorem (Aigner-Horev, Diestel and Postle)

Any matroid can be canonically decomposed over its 2-separations into a tree of matroids, each of which is either 3-connected, a single circuit or a single cocircuit.
Rebuilding matroids out of their 3-connected parts

Theorem (Tutte)
Any finite matroid can be canonically represented as a 2-sum of a tree of matroids, each of which is either 3-connected, a single circuit or a single cocircuit.

Theorem (Aigner-Horev, Diestel and Postle)
Any matroid can be canonically decomposed over its 2-separations into a tree of matroids, each of which is either 3-connected, a single circuit or a single cocircuit.

Theorem
Any tame matroid can be canonically represented as $M_\Psi(T)$ for some tree T of tame matroids each of which is either 3-connected, a single circuit or a single cocircuit.
THANKS FOR LISTENING!
Why determinacy is relevant

Theorem (Martin)

If the set Ψ is Borel then the game $G(\Psi)$ is determined.
Why determinacy is relevant

Theorem (Martin)
If the set Ψ is Borel then the game $G(\Psi)$ is determined.
Why determinacy is relevant

Theorem (Martin)
If the set Ψ is Borel then the game $G(\Psi)$ is determined.
Why determinacy is relevant

Theorem (Martin)
If the set Ψ is Borel then the game $G(\Psi)$ is determined.
Why determinacy is relevant

Theorem (Martin)
If the set Ψ is Borel then the game $G(\Psi)$ is determined.
Why determinacy is relevant

Theorem (Martin)

If the set Ψ is Borel then the game $G(\Psi)$ is determined.
Why determinacy is relevant

Theorem (Martin)

If the set Ψ is Borel then the game $G(\Psi)$ is determined.
Why determinacy is relevant

Theorem (Martin)

If the set Ψ is Borel then the game $G(\Psi)$ is determined.
Why determinacy is relevant

Theorem

If the set Ψ is Borel then $M_{\Psi}(T)$ is a matroid.