Linear relations for a generalized Tutte polynomial

Gary Gordon

Department of Mathematics
Lafayette College
Why Do Americans Stink at Math?

By ELIZABETH GREEN JULY 23, 2014

When Akihiko Takahashi was a junior in college in 1978, he was like most of the other students at his university in suburban Tokyo. He had a vague sense of wanting to accomplish something but no clue what that something should be. But that spring he met a man who would become his mentor, and this relationship set the course of his entire career.

Takeshi Matsuyama was an elementary-school teacher, but like a small number of instructors in Japan, he taught not just young children but also college students who wanted to become teachers. At the university-affiliated elementary school where Matsuyama taught, he turned his classroom into a kind of laboratory, concocting and trying out new teaching ideas. When Takahashi met him, Matsuyama was in the middle of his boldest experiment yet — revolutionizing the way students learned math by radically changing the way teachers taught it.

Instead of having students memorize and then practice endless lists of equations — which Takahashi remembered from his own days in school —
Warm-up problem

September 2013 Jungle Gym: Problem 297.

For each point P, record the number of 3-point lines through P, the number of 4-point lines through P, and so on.

<table>
<thead>
<tr>
<th>Point</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>43</td>
<td>3^3</td>
<td>43</td>
<td>4</td>
<td>...</td>
</tr>
</tbody>
</table>

Question: Is there a finite set of points in the plane where each point has a unique address?
Warm-up problem

Matroid Problem: Find a rank 3 geometry M (represented over the reals) with the property that

- $M - x \not\cong M - y$ for all $x \neq y$, and
- $M/x \not\cong M/y$ for all $x \neq y$.

$$M/a \cong M/c.$$
Warm-up problem

Matroid Problem: Find a rank 3 geometry M (represented over the reals) with the property that

- $M - x \not\sim M - y$ for all $x \neq y$, and
- $M/x \not\sim M/y$ for all $x \neq y$.

Reid’s “Fano” Matroid.
Tutte polynomial

Definition

Let M be a matroid with rank function r. The **Tutte polynomial** is

$$T(M; x, y) = \sum_{A \subseteq S} (x - 1)^{r(S) - r(A)} (y - 1)^{|A| - r(A)}.$$
Example

$$r(A) = \max_{F \subseteq A} \{|F| \mid F \text{ is acyclic}\}$$

Graph Matroid

<table>
<thead>
<tr>
<th>Subset</th>
<th>\emptyset</th>
<th>singletons</th>
<th>pairs</th>
<th>triples</th>
<th>4 elts.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2 or 3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
\[T(M; x, y) = \sum_{A \subseteq S} (x - 1)^{r(S) - r(A)} (y - 1)^{|A| - r(A)}. \]

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{Subset} & \emptyset & \text{singletons} & \text{pairs} & \text{triples} & \text{4 elts.} & E \\
\hline
\text{Rank} & 0 & 1 & 2 & 2 \text{ or } 3 & 3 & 3 \\
\hline
\end{array}
\]

\[A = \{a, b, c\}, \ r(A) = 2, \ r(S) = 3 \Rightarrow \text{Term is } (x - 1)(y - 1) \]
\[T(M; x, y) = \sum_{A \subseteq S} (x - 1)^{r(S) - r(A)} (y - 1)^{|A| - r(A)}. \]

\[T(M; x, y) = x^3 + 2x^2 + 2xy + x + y^2 + y \]

<table>
<thead>
<tr>
<th>Subset</th>
<th>∅</th>
<th>singletons</th>
<th>pairs</th>
<th>triples</th>
<th>4 elts.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2 or 3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Key recursion: \(T(M) = T(M/e) + T(M - e) \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td># spanning forests (bases)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td># forests (independent sets)</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td># acyclic orientations</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td># acyclic orientations with unique specified source.</td>
</tr>
</tbody>
</table>
[Observation - 1940’s] Let \(b(G) \) be the number of spanning trees of \(G \). Then

\[
b(G) = b(G/e) + b(G - e)
\]

\[
T(M; x, y) = \sum b_{i,j} x^i y^j,
\]

where \(b_{i,j} \) is the number of bases of \(M \) of internal activity \(i \) and external activity \(j \).
Properties

- Fundamental deletion-contraction recursion:
 - $T(M) = T(M - p) + T(M/p)$ if p is neither a loop nor an isthmus (coloop)
 - $T(M) = xT(M/p)$ if p is an isthmus;
 - $T(M) = yT(M - p)$ if p is a loop.

- Dual matroid: $T(M^*; x, y) = T(M; y, x)$.

- Factors: $T(M_1 \oplus M_2) = T(M_1)T(M_2)$.
Free samples

\[T(M; x, y) = \sum b_{i,j} x^i y^j \]

- \[x^3 + 2x^2 + 2xy + x + y^2 + y \]
- \[x^3 + x^2y + 2x^2 + 2xy + 3x + y^3 + 3y^2 + 3y \]
- \[x^2 + 3x + y^3 + 2y^2 + 3y \]
- \[x^4 + 3x^3 + 4x^2 + 2x + 2x^2y + 5xy + 2y + xy^2 + 3y^2 + y^3 \]

Things you should notice:
1. \(b_{i,j} \geq 0 \) for all \(i, j \).
2. \(T(M; 0, 0) = 0 \), i.e., there is no constant term.
3. \(b_{1,0} = b_{0,1} \), i.e., coef. of \(x \) = coef of \(y \).
Free samples

\[T(M; x, y) = \sum b_{i,j} x^i y^j \]

- \(x^3 + 2x^2 + 2xy + x + y^2 + y \)
- \(x^3 + x^2y + 2x^2 + 2xy + 3x + y^3 + 3y^2 + 3y \)
- \(x^2 + 3x + y^3 + 2y^2 + 3y \)
- \(x^4 + 3x^3 + 4x^2 + 2x + 2x^2y + 5xy + 2y + xy^2 + 3y^2 + y^3 \)

Things you should notice:

1. \(b_{i,j} \geq 0 \) for all \(i, j \).
Free samples

\[T(M; x, y) = \sum b_{i,j} x^i y^j \]

- \(x^3 + 2x^2 + 2xy + x + y^2 + y \)
- \(x^3 + x^2y + 2x^2 + 2xy + 3x + y^3 + 3y^2 + 3y \)
- \(x^2 + 3x + y^3 + 2y^2 + 3y \)
- \(x^4 + 3x^3 + 4x^2 + 2x + 2x^2y + 5xy + 2y + xy^2 + 3y^2 + y^3 \)

Things you should notice:

1. \(b_{i,j} \geq 0 \) for all \(i, j \).
2. \(T(M; 0, 0) = 0 \), i.e., there is no constant term.
Free samples

\[T(M; x, y) = \sum b_{i,j} x^i y^j \]

- \(x^3 + 2x^2 + 2xy + x + y^2 + y \)
- \(x^3 + x^2y + 2x^2 + 2xy + 3x + y^3 + 3y^2 + 3y \)
- \(x^2 + 3x + y^3 + 2y^2 + 3y \)
- \(x^4 + 3x^3 + 4x^2 + 2x + 2x^2y + 5xy + 2y + xy^2 + 3y^2 + y^3 \)

Things you should notice:

1. \(b_{i,j} \geq 0 \) for all \(i, j \).
2. \(T(M; 0, 0) = 0 \), i.e., there is no constant term.
3. \(b_{1,0} = b_{0,1} \), i.e., coef. of \(x = \) coef of \(y \).
Free samples

\[T(M; x, y) = \sum b_{i,j} x^i y^j \]

- \[x^3 + 2x^2 + 2xy + x + y^2 + y \]
- \[x^3 + x^2y + 2x^2 + 2xy + 3x + y^3 + 3y^2 + 3y \]
- \[x^2 + 3x + y^3 + 2y^2 + 3y \]
- \[x^4 + 3x^3 + 4x^2 + 2x + 2x^2y + 5xy + 2y + xy^2 + 3y^2 + y^3 \]

Things you should notice:

1. \(b_{i,j} \geq 0 \) for all \(i, j \).
2. \(T(M; 0, 0) = 0 \), i.e., there is no constant term.
3. \(b_{1,0} = b_{0,1} \), i.e., coef. of \(x = \) coef of \(y \).
Beta invariant

\[T(M_1; x, y) = x^2 y \]
\[T(M_2; x, y) = x^2 + x + y \]

Which matroid is connected?
Beta invariant

\[T(M_1; x, y) = x^2 y \quad \quad T(M_2; x, y) = x^2 + x + y \]

Which matroid is connected?

- \(M_1 \) is a direct sum of a loop and two isthmuses (coloops);
- \(M_2 = U_{2,3} \).
Beta invariant

\[T(M_1; x, y) = x^2 y \]
\[T(M_2; x, y) = x^2 + x + y \]

Which matroid is connected?

- \(M_1 \) is a direct sum of a loop and two isthmuses (coloops);
- \(M_2 = U_{2,3} \).

Theorem (Crapo ’67)

A matroid \(M \) (on more than one point) is connected if and only if \(b_{1,0} > 0 \).
Free samples

\[T(M; x, y) = \sum b_{i,j}x^i y^j \]

- \[x^3 + 2x^2 + 2xy + x + y^2 + y \]
- \[x^3 + x^2y + 2x^2 + 2xy + 3x + y^3 + 3y^2 + 3y \]
- \[x^2 + 3x + y^3 + 2y^2 + 3y \]
- \[x^4 + 3x^3 + 4x^2 + 2x + 2x^2y + 5xy + 2y + xy^2 + 3y^2 + y^3 \]

Things Brylawski (1972) noticed:

1. \[b_{0,2} + b_{2,0} = b_{1,0} + b_{1,1} \]
Free samples

\[T(M; x, y) = \sum b_{i,j}x^iy^j \]

- \(x^3 + 2x^2 + 2xy + x + y^2 + y \)
- \(x^3 + x^2y + 2x^2 + 2xy + 3x + y^3 + 3y^2 + 3y \)
- \(x^2 + 3x + y^3 + 2y^2 + 3y \)
- \(x^4 + 3x^3 + 4x^2 + 2x + 2x^2y + 5xy + 2y + xy^2 + 3y^2 + y^3 \)

Things Brylawski (1972) noticed:

\[b_{0,2} + b_{2,0} = b_{1,0} + b_{1,1} \]
Free samples

\[T(M; x, y) = \sum b_{i,j}x^i y^j \]

- \(x^3 + 2x^2 + 2xy + x + y^2 + y \)
- \(x^3 + x^2y + 2x^2 + 2xy + 3x + y^3 + 3y^2 + 3y \)
- \(x^2 + 3x + y^3 + 2y^2 + 3y \)
- \(x^4 + 3x^3 + 4x^2 + 2x + 2x^2y + 5xy + 2y + xy^2 + 3y^2 + y^3 \)

Things Brylawski (1972) noticed:

1. \(b_{0,2} + b_{2,0} = b_{1,0} + b_{1,1} \)
2. \(b_{3,0} + b_{0,2} + b_{1,2} = b_{2,0} + b_{2,1} + b_{0,3} \)
Free samples

\[T(M; x, y) = \sum b_{i,j} x^i y^j \]

- \(x^3 + 2x^2 + 2xy + x + y^2 + y \)
- \(x^3 + x^2y + 2x^2 + 2xy + 3x + y^3 + 3y^2 + 3y \)
- \(x^2 + 3x + y^3 + 2y^2 + 3y \)
- \(x^4 + 3x^3 + 4x^2 + 2x + 2x^2y + 5xy + 2y + xy^2 + 3y^2 + y^3 \)

Things Brylawski (1972) noticed:

1. \(b_{0,2} + b_{2,0} = b_{1,0} + b_{1,1} \)

2. \(b_{3,0} + b_{0,2} + b_{1,2} = b_{2,0} + b_{2,1} + b_{0,3} \)
Theorem (Brylawski '72)

\(M \) is a matroid on \(n \)-element set with Tutte polynomial

\[
T(M; x, y) = \sum b_{i,j} x^i y^j.
\]

For all \(0 \leq k < n \),

\[
\sum_{i=0}^{k} \sum_{j=0}^{k-i} (-1)^j \binom{k-i}{j} b_{i,j} = 0.
\]
Theorem (Brylawski ’72)

A matroid is on n-element set with Tutte polynomial

\[T(M; x, y) = \sum b_{i,j} x^i y^j. \]

For all \(0 \leq k < n \),

\[
\sum_{i=0}^{k} \sum_{j=0}^{k-i} (-1)^j \binom{k-i}{j} b_{i,j} = 0.
\]

Theorem (C. Merino, A. de Mier, M. Noy, 2001)

A matroid is connected if and only if its Tutte polynomial is irreducible over \(\mathbb{Z}[x, y] \).

Recall: \(T(M_1 \oplus M_2) = T(M_1) T(M_2) \).
A *ranked set* is a set S with a rank function r. We write $G = (S, r)$, where the function $r : S \to \mathbb{Z}$ satisfies

1. **Normalization**
 - $(R0)$ \(r(\emptyset) = 0 \)

2. **Rank S maximum**
 - $(R1)$ \(r(A) \leq r(S) \) for all $A \subseteq S$

3. **Subcardinality**
 - $(R2)$ \(r(A) \leq |A| \) for all $A \subseteq S$

Ranked sets include matroids, antimatroids and greedoids.

\[
T(G; x, y) = \sum_{A \subseteq S} (x - 1)^{r(S) - r(A)} (y - 1)^{|A| - r(A)} = \sum b_{i,j} x^i y^j
\]
A greedoid G is a pair (S, r) where S is a finite set and $r : 2^S \rightarrow \mathbb{Z}^+ \cup \{0\}$ such that:

R0. $r(\emptyset) = 0$ [Normalization]

R1. $r(A) \leq r(A \cup \{p\})$ [Increasing]

R2. $r(A) \leq |A|$ [Subcardinal]

R3'. If $r(A) = r(A \cup \{p_1\}) = r(A \cup \{p_2\})$, then $r(A \cup \{p_1, p_2\}) = r(A)$. [Local semimodularity]
A greedoid example

Rooted graphs are greedoids. Let $S =$ edge set, and define rank as follows:

$$r(A) = \max_{B \subseteq A} \{|B| : B \text{ is a rooted subtree}\}.$$
Greedoid Tutte polynomial

\[T(G; x, y) = \sum_{A \subseteq S} (x - 1)^{r(S) - r(A)} (y - 1)^{|A| - r(A)}. \]

Deletion-contraction:
\[T(G) = (x - 1)^{r(G) - r(G - p)} T(G - p) + T(G/p) \]

<table>
<thead>
<tr>
<th>Subset</th>
<th>\emptyset</th>
<th>a or c</th>
<th>b</th>
<th>ab or ac</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>Term</td>
<td>$(x - 1)^3$</td>
<td>$(x - 1)^2$</td>
<td>$(x - 1)^3(y - 1)$</td>
<td>$(x - 1)$</td>
<td>...</td>
</tr>
</tbody>
</table>

\[T(G; x, y) = x((x - 1)^2 y + x) = x^3 y - 2x^2 y + x^2 + xy. \]
Greedoid Tutte results

\[T(G; x, y) = \sum_{A \subseteq S} (x - 1)^{r(S) - r(A)} (y - 1)^{|A| - r(A)} = \sum b_{i,j} x^i y^j \]

Recursion: \[T(G) = (x - 1)^{r(G) - r(G - p)} T(G - p) + T(G/p) \]

Theorem (G. - McMahon ('89))

Let \(G \) be a greedoid. Then if \(G \) is a rooted tree, then \(T(G) \) uniquely determines \(G \).
Greedoid Tutte results

\[T(G; x, y) = \sum_{A \subseteq S} (x - 1)^{r(S) - r(A)} (y - 1)^{|A| - r(A)} = \sum b_{i,j} x^i y^j \]

Let \(a(T) \) = the number edges of the rooted subtree \(T \), and \(b(T) \) = the number of leaves.

Corollary: Rooted trees can be reconstructed from the ordered pairs \(\{(a(T), b(T))\} \).
Main result

Theorem

\(G = (S, r)\) is a ranked set with \(|S| = n\) and Tutte polynomial

\[T(M; x, y) = \sum b_{i,j} x^i y^j. \]

1. For all \(0 \leq k < n\),

\[\sum_{i=0}^{k} \sum_{j=0}^{k-i} (-1)^j \binom{k-i}{j} b_{i,j} = 0. \]

2. For \(k = n\),

\[\sum_{i=0}^{k} \sum_{j=0}^{k-i} (-1)^j \binom{k-i}{j} b_{i,j} = (-1)^{n-r(S)}. \]
Non-matroid examples

\[T(G; x, y) = \sum_{A \subseteq S} (x - 1)^{r(S)-r(A)}(y - 1)^{|A|-r(A)} = \sum b_{i,j}x^i y^j \]

\[T(G) = x^3 + 2x^2 + 2xy + x + y^2 + y \]
\[T(G') = x^3 y^2 - 3x^2 y^2 + 2x^2 y + x^2 + 3xy^2 - 2xy + 3x + 3y \]
\[T(G'') = x^3 y^3 - 3x^2 y^3 + 2x^2 y + 3xy^3 - 3xy + 4x - y^3 + y^2 + 4y \]
Trees

Rank: \(r(A) = \max_{F \subseteq A} \{|F| \mid F \text{ is feasible}\} \).

- Feasible sets are subtree **complements**.
- Convex sets are the **subtrees**.

\[
\begin{array}{cccccccc}
 & a & & & & & g & \\
 b & & c & d & e & f & h & i \\
 & & & & & & & \\
\end{array}
\]
Trees

$[k = 1]$ Let T be a tree with m interior edges and let S be the collection of all subtrees with exactly one interior edge. Then

$$\sum_{S \in S} (-1)^{|S|} = -m.$$
Trees

\[k = 2 \]

\[
(-a_{1,0} + 3a_{2,0} - 6a_{3,0}) + (-3a_{3,1} + 4a_{4,1} - 5a_{5,1}) + (a_{4,2} - a_{5,2} + a_{6,2})
\]

\[
\begin{array}{|c|ccccccc|}
\hline
 & i = 0 & i = 1 & i = 2 & i = 3 & i = 4 & i = 5 & i = 6 \\
\hline
a_{i,0} & 1 & 9 & 11 & 3 & 0 & 0 & 0 \\
a_{i,1} & 0 & 0 & 0 & 9 & 6 & 1 & 0 \\
a_{i,2} & 0 & 0 & 0 & 0 & 6 & 5 & 1 \\
\hline
\end{array}
\]

\[
(-9 + 33 - 18) + (-27 + 24 - 5) + (6 - 5 + 1) = 0.
\]
Antimatroids

Let $G = (S, r)$ be an antimatroid with $a_{i,j}$ convex sets of size i and interior of size j.

1. For $k < n$,

$$
\sum_{i=0}^{k} \sum_{j=0}^{k-i} (-1)^j \binom{k-i}{j} \sum_{s=i}^{n} (-1)^{s-i} \binom{s}{i} a_{s,j} = 0.
$$

2. For $k = n$,

$$
\sum_{i=0}^{n} \sum_{j=0}^{n-i} (-1)^j \binom{n-i}{j} \sum_{s=i}^{n} (-1)^{s-i} \binom{s}{i} a_{s,j} = 1.
$$
Finite subsets \mathbb{R}^n

Rank: $r(A) = \max_{F \subseteq A} \{|F| \mid F \text{ is feasible}\}$.

- C is convex if $\text{Hull}(C) \cap S = C$.
- Feasible sets are convex set complements.

Convex: $\{b, c, d, e, f\}$ Not convex: $\{a, b, d\}$

Theorem

G be an antimatroid with convex sets \mathcal{C}. Then

$$T(G; x, y) = \sum_{C \in \mathcal{C}} (x - 1)^{|C|} y^{\text{int}(C)}.$$
Finite subsets \mathbb{R}^n

Let S be a finite subset of \mathbb{R}^n. Let C_1 be the collection of all convex sets with exactly one interior point. Then

$$\sum_{C \in C_1} (-1)^{|C|} = (-1)^n |int(S)|.$$
Finite subsets \mathbb{R}^n

\[[k = 2] \quad \sum_{i=0}^{n} (-1)^i \left(\binom{i+1}{2} a_{i,0} + ia_{i,1} + a_{i,2} \right) \]

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
& i = 0 & i = 1 & i = 2 & i = 3 & i = 4 & i = 5 & i = 6 \\
\hline
f_i = a_{i,0} & 1 & 6 & 15 & 15 & 6 & 1 & 0 \\
a_{i,1} & 0 & 0 & 0 & 0 & 4 & 2 & 0 \\
a_{i,2} & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline
\end{array}
\]

Then \(\sum_{i=0}^{n} (-1)^i \left(\binom{i+1}{2} a_{i,0} + ia_{i,1} + a_{i,2} \right) = -(6) + (45) - (90) + (60 + 16) - (15 + 10 + 1) + (1) = 0. \)
Other antimatroids and greedoids

- Trees
- Rooted graphs
- Posets
- Chordal graphs
- Subsets of \mathbb{R}^n
- ...
Conjecture: Almost all matroids have $M - x \not\cong M - y$ and $M/x \not\cong M/y$ for all x and y.