Biased graphs with no vertex-disjoint unbalanced cycles

Irene Pivotto (University of Western Australia)

Princeton July 2014

(Joint work with R. Chen)

Graphs with no two vertex-disjoint cycles:

1 trees

Graphs with no two vertex-disjoint odd cycles:

⊕, , ⊕z bipartite pieces

Signed graphs with no two vertex-disjoint S-odd cycles:

Signed graphs with no two vertex-disjoint S-odd cycles:

Signed graph: pair (G,S), where SEE(G).

A cycle is 5-odd if [CnS] is odd

Signed graphs with no two vertex-disjoint 5-add cycles:

 \bigoplus_{1} , \bigoplus_{2} , \bigoplus_{3} pieces with $S=\emptyset$ Biased graph: pair (G,B) where G is a graph and B is a set of cycles of G satisfying the theta property: $\begin{array}{c}
& \in B \\
& \in B
\end{array}$ $\begin{array}{c}
& \in B
\end{array}$

Cycles in B are balanced, cycles not in B are unbalanced.

Biased graph: pair (G,B) where G is a graph and B is a set of cycles of G satisfying the theta property.

Examples:

- G with B=\$
- · (G, B) with B= all cycles of G (balanced biased graph)

· Signed graphs: B={S-even cycles}

· Group-labelled graphs:

CIRCUITS:

Biased graphs with no two vertex-disjoint unbalanced cycles:

Biased graphs with no two vertex-disjoint unbalanced cycles:

Biased graphs with no two vertex-disjoint unbalanced cycles:

Biased graphs with no two vertex-disjoint unbalanced cycles:

⊕₁,⊕₂,⊕₃ balanced pieces

Biased graphs with no two vertex-disjoint unbalanced cycles:

⊕₁,⊕₂,⊕₃ balanced pieces Proof idea: _r= (4,78) biased graph with no two disjoint unbalanced cycles.

Step o: exclude simple cases

Proof idea: _r= (4,78) biased graph with no two disjoint unbalanced cycles.

Step o: exclude simple cases

Step 1: either G is 4-connected, or

Proof idea: _r= (4,78) biased graph with no two disjoint unbalanced cycles.

Step o: exclude simple cases

Step 1: either G is 4-connected, or

Step 2: either 12 has a 2-connected spanning balanced

Subgraph, or

Proof idea: _r= (4,18) biased graph with no two disjoint unbalanced cycles.

Steps 0,1,2: G is 4-connected and \mathfrak{L} has a 2-connected spanning balanced Subgraph \mathfrak{L}' . Pick \mathfrak{L}' maximal. Set $U = E(\mathfrak{L}) - E(\mathfrak{L}')$.

=> every cycle in _si'uf using f is unbalanced

Proof idea: _r= (4,18) biased graph with no two disjoint unbalanced cycles.

Steps 0,1,2: G is 4-connected and \mathfrak{L} has a 2-connected spanning balanced Subgraph \mathfrak{L}' . Pick \mathfrak{L}' maximal. Set $U = E(\mathfrak{L}) - E(\mathfrak{L}')$.

Step 3:

either

or at least 2 indep. edges in U

Proof idea: _r= (4,18) biased graph with no two disjoint unbalanced cycles.

Steps 0, 1, 2,3: G is 4-connected and \mathfrak{L} has a 2-connected spanning balanced Subgraph \mathfrak{L}' . Pick \mathfrak{L}' maximal. Set $U = E(\mathfrak{L}) - E(\mathfrak{L}')$. U has at least two indep. edges.

Step 4:

either

(projective planar signed graphic)

or

9

Step 4:

either

(projective planar signed graphic)

or

9

