Enumeration of 2-Polymatroids on up to Seven Elements

Thomas J. Savitsky

The George Washington University

July 21, 2014
Definition of a k-polymatroid

Definition
Let S be a finite set. Suppose $\rho : 2^S \to \mathbb{N}$ satisfies the following four conditions:

(i) if $X, Y \subseteq S$, then $\rho(X \cap Y) + \rho(X \cup Y) \leq \rho(X) + \rho(Y)$ (submodular);
(ii) if $X \subseteq Y \subseteq S$, then $\rho(X) \leq \rho(Y)$ (monotone);
(iii) $\rho(\emptyset) = 0$ (normalized); and
(iv) $\rho(\{x\}) \leq k$ for all $x \in S$.

Then (ρ, S) is a k-polymatroid with rank function ρ and ground set S.

A matroid is a 1-polymatroid.
Theorem (Helgason 1974, McDiarmid 1975, Lovász 1977)

Let \((\rho, S)\) be a \(k\)-polymatroid. Then there exists a matroid \((r, E)\) and a map \(\sigma: S \to 2^E\) such that \(\rho(X) = r(\bigcup_{x \in X} \sigma(x))\) for all \(X \subseteq S\).
Examples of 2-polymatroids

Let \((r_1, E)\) and \((r_2, E)\) be matroids. Then \((r_1 + r_2, E)\) is a 2-polymatroid.
Examples of 2-polymatroids

Let \((r_1, E)\) and \((r_2, E)\) be matroids. Then \((r_1 + r_2, E)\) is a 2-polymatroid.

Let \(G = (V, E)\) be a graph. For \(X \subseteq E\), define \(\rho(X)\) as the number of vertices incident to some edge in \(X\). Then \((\rho, E)\) is a 2-polymatroid. For example:

\[
\begin{align*}
\rho(a) &= 2 \\
\rho(abc) &= 3 \\
\rho(ad) &= 4
\end{align*}
\]
A flat of a k-polymatroid (ρ, S) is a set $F \subseteq S$ with the property that $\rho(F \cup e) > \rho(F)$ for each $e \in S - F$.

Knowledge of the flats and their ranks of a k-polymatroid suffices to determine the entire k-polymatroid.

As for matroids, the intersection of flats is itself a flat.
Definition

Let \((\rho, S)\) be a polymatroid, and let \(e\) be an element not in \(S\). If \((\bar{\rho}, S \cup e)\) is a polymatroid with \(\bar{\rho}(X) = \rho(X)\) for all \(X \subseteq S\), then \(\bar{\rho}\) is a single-element extension of \(\rho\).
Definition
Let \((\rho, S)\) be a polymatroid, and let \(e\) be an element not in \(S\). If \((\bar{\rho}, S \cup e)\) is a polymatroid with \(\bar{\rho}(X) = \rho(X)\) for all \(X \subseteq S\), then \(\bar{\rho}\) is a single-element extension of \(\rho\).

Let \(c = \bar{\rho}(e)\). Partition the flats of \((\rho, S)\) into classes

\[
\mathcal{M}_0, \mathcal{M}_1, \ldots, \mathcal{M}_c
\]

by the rule \(F \in \mathcal{M}_i\) if and only if \(\bar{\rho}(F \cup e) = \rho(F) + i\).

(Note that some \(\mathcal{M}_i\) may be empty.)
Modular Cuts

Definition
A modular cut of a polymatroid \((\rho, S)\) is a subset \(M\) of \(F(\rho, S)\) which is closed under:

(i) supersets and
(ii) intersections of modular pairs.

Theorem (Crapo 1964)
The single-element extensions of a matroid are in one-to-one correspondence with its modular cuts.

The key point is that \(M_0\) is a modular cut.
Example 1
Example 2

\[a \quad \| \quad b \]

\[a \quad \| \quad b \quad c \]

\[a \quad b \quad \emptyset \quad M_0 \quad M_2 \]
Example 3
Example 4

\[a \quad \rightarrow_{b} \quad b \]

\[a \quad \rightarrow_{c} \quad b \quad \text{rank 4} \]

\[a \quad \underset{\varnothing}{\rightarrow} \quad b \]

\[a \quad \underset{\varnothing}{\rightarrow} \quad b \quad \text{rank 4} \]

\[M_1 \quad \text{and} \quad M_2 \]
Extensible Partitions

Which partitions $\mathcal{M}_0, \mathcal{M}_1, \ldots, \mathcal{M}_c$ give rise to single-element extensions of the k-polymatroid (ρ, S)?
Extensible Partitions

Which partitions $\mathcal{M}_0, \mathcal{M}_1, \ldots, \mathcal{M}_c$ give rise to single-element extensions of the k-polymatroid (ρ, S)?

Define $\bar{\rho}: 2^{S \cup e} \to \mathbb{N}$ as follows.

- For $X \subseteq S$, set $\bar{\rho}(X) = \rho(X)$.
- If $\text{cl}(X) \in \mathcal{M}_i$, then set $\bar{\rho}(X \cup e) = \rho(X) + i$.

Extensible Partitions

Which partitions M_0, M_1, \ldots, M_c give rise to single-element extensions of the k-polymatroid (ρ, S)?

Define $\bar{\rho} : 2^{S \cup e} \to \mathbb{N}$ as follows.

- For $X \subseteq S$, set $\bar{\rho}(X) = \rho(X)$.
- If $\text{cl}(X) \in M_i$, then set $\bar{\rho}(X \cup e) = \rho(X) + i$.

Recall the definition of modular defect:

$$\delta(X, Y) = \rho(X) + \rho(Y) - \rho(X \cup Y) - \rho(X \cap Y).$$

Define also

$$\mu(X) = i \quad \text{if and only if} \quad \text{cl}(X) \in M_i.$$
A Characterization of Extensible Partitions

Theorem (Savitsky 2014)

As defined above, $(\tilde{\rho}, S \cup e)$ is a polymatroid, and hence a single-element extension of (ρ, S), if and only if the following three conditions hold for all flats F, G of (ρ, S):

(I) $\mu(F \cap G) + \mu(F \cup G) - \delta(F, G) \leq \mu(F) + \mu(G)$;

(II) if $F \subseteq G$, then $\rho(F) + \mu(F) \leq \rho(G) + \mu(G)$; and

(III) if $F \subseteq G$, then $\mu(G) \leq \mu(F)$.
Theorem (Savitsky 2014)

As defined above, \((\bar{\rho}, S \cup e)\) is a polymatroid, and hence a single-element extension of \((\rho, S)\), if and only if the following three conditions hold for all flats \(F, G\) of \((\rho, S)\):

(I) \(\mu(F \cap G) + \mu(F \cup G) - \delta(F, G) \leq \mu(F) + \mu(G)\);
(II) if \(F \subseteq G\), then \(\rho(F) + \mu(F) \leq \rho(G) + \mu(G)\); and
(III) if \(F \subseteq G\), then \(\mu(G) \leq \mu(F)\).

The flats of a single-element extension of a \(k\)-polymatroid may be described in terms of the flats of the original \(k\)-polymatroid.
Can we construct a catalog of all non-isomorphic k-polymatroids on the ground set $\{1, \ldots, n\}$? Presumably n and k must be small.

Much work has been done for the matroid case ($k = 1$) with the aid of computers.
Can we construct a catalog of all non-isomorphic \(k \)-polymatroids on the ground set \(\{1, \ldots, n\} \)? Presumably \(n \) and \(k \) must be small.

Much work has been done for the matroid case \((k = 1)\) with the aid of computers.

In the late 1960s, Blackburn, Crapo, and Higgs created a catalog of (simple) matroids on at most 8 elements.
A Brief History of Matroid Enumeration

Can we construct a catalog of all non-isomorphic k-polymatroids on the ground set $\{1, \ldots, n\}$? Presumably n and k must be small.

Much work has been done for the matroid case ($k = 1$) with the aid of computers.

In the late 1960s, Blackburn, Crapo, and Higgs created a catalog of (simple) matroids on at most 8 elements.

In 2007, Mayhew and Royle created a database of all matroids on at most 9 elements.
Can we construct a catalog of all non-isomorphic k-polymatroids on the ground set $\{1, \ldots, n\}$? Presumably n and k must be small.

Much work has been done for the matroid case ($k = 1$) with the aid of computers.

In the late 1960s, Blackburn, Crapo, and Higgs created a catalog of (simple) matroids on at most 8 elements.

In 2007, Mayhew and Royle created a database of all matroids on at most 9 elements.

In 2012, Matsumoto, Moriyama, Imai, and Bremner constructed all 10-element matroids with rank not equal to 5.
The Number of Small Matroids by Rank

This table lists the number of non-isomorphic matroids on the ground set \{1, \ldots, n\} by rank.

<table>
<thead>
<tr>
<th>rank \ n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>23</td>
<td>37</td>
<td>58</td>
<td>87</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>13</td>
<td>38</td>
<td>108</td>
<td>325</td>
<td>1275</td>
<td>10037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>23</td>
<td>108</td>
<td>940</td>
<td>190,214</td>
<td>4,886,380,924</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>6</td>
<td>37</td>
<td>325</td>
<td>190,214</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>7</td>
<td>58</td>
<td>1275</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>8</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>17</td>
<td>38</td>
<td>98</td>
<td>306</td>
<td>1724</td>
<td>383,172</td>
<td></td>
</tr>
</tbody>
</table>
Having developed an analogue of the theory of single-element extensions of matroids, I managed to adapt Mayhew and Royle’s enumeration approach to 2-polymatroids.

Using a desktop computer, I created a catalog of all non-isomorphic 2-polymatroids on at most 7 elements. This computation took about 4 days.

The results are summarized on the next slide, which lists the number of non-isomorphic 2-polymatroids on the ground set \(\{1, \ldots, n\} \) by rank.
<table>
<thead>
<tr>
<th>rank \ n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>21</td>
<td>39</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>12</td>
<td>49</td>
<td>172</td>
<td>573</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>10</td>
<td>78</td>
<td>584</td>
<td>5236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>49</td>
<td>778</td>
<td>18,033</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>21</td>
<td>584</td>
<td>46,661</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>172</td>
<td>18,033</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>39</td>
<td>5236</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>573</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>40</td>
<td>228</td>
<td>2380</td>
<td>94,495</td>
</tr>
</tbody>
</table>
The Number of (Unlabeled) Small 2-polymatroids by Rank

<table>
<thead>
<tr>
<th>rank \ n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>21</td>
<td>39</td>
<td>68</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>12</td>
<td>49</td>
<td>172</td>
<td>573</td>
<td>1890</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>10</td>
<td>78</td>
<td>584</td>
<td>5236</td>
<td>72,205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>49</td>
<td>778</td>
<td>18,033</td>
<td>971,573</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>21</td>
<td>584</td>
<td>46,661</td>
<td>149,636,721</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>172</td>
<td>18,033</td>
<td>19,498,369</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>39</td>
<td>5236</td>
<td>149,636,721</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>573</td>
<td>971,573</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>68</td>
<td>72,205</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>6</td>
<td>1890</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>40</td>
<td>228</td>
<td>2380</td>
<td>94,495</td>
<td>320,863,387</td>
</tr>
</tbody>
</table>
Non-unimodality

The rank of a k-polymatroid (ρ, S) is $\rho(S)$.

Surprisingly, 2-polymatroids on 7 elements are not unimodal in rank. Since there are fewer of rank 7 than of rank 6, there is a “dip” in the middle.
The rank of a k-polymatroid (ρ, S) is $\rho(S)$.

Surprisingly, 2-polymatroids on 7 elements are not unimodal in rank. Since there are fewer of rank 7 than of rank 6, there is a “dip” in the middle.

The following notion of k-duality for k-polymatroids explains the symmetry in the columns:

$$\rho^*(X) = k|X| + \rho(S - X) - \rho(S).$$
Linear Inequalities

Recall the definition of a k-polymatroid.

Definition

Let S be a finite set. Suppose $\rho : 2^S \to \mathbb{N}$ satisfies the following four conditions:

(i) if $X, Y \subseteq S$, then $\rho(X \cap Y) + \rho(X \cup Y) \leq \rho(X) + \rho(Y)$ (submodular);

(ii) if $X \subseteq Y \subseteq S$, then $\rho(X) \leq \rho(Y)$ (monotone);

(iii) $\rho(\emptyset) = 0$ (normalized); and

(iv) $\rho(\{x\}) \leq k$ for all $x \in S$.
Recall the definition of a k-polymatroid.

Definition
Let S be a finite set. Suppose $\rho : 2^S \to \mathbb{N}$ satisfies the following four conditions:

(i) if $X, Y \subseteq S$, then $\rho(X \cap Y) + \rho(X \cup Y) \leq \rho(X) + \rho(Y)$ (submodular);
(ii) if $X \subseteq Y \subseteq S$, then $\rho(X) \leq \rho(Y)$ (monotone);
(iii) $\rho(\emptyset) = 0$ (normalized); and
(iv) $\rho(\{x\}) \leq k$ for all $x \in S$.

Now think of the $2^{|S|}$ values $\rho(X)$ as variables. Notice that all the inequalities they must satisfy are **linear**.
Therefore, the feasible region of an integer program gives all \(k \)-polymatroids on a fixed ground set. Many of these will of course be isomorphic.

The objective function of the integer program is immaterial. We want all solutions, not just “optimal” ones.
Therefore, the feasible region of an integer program gives all k-polymatroids on a fixed ground set. Many of these will of course be isomorphic.

The objective function of the integer program is immaterial. We want all solutions, not just “optimal” ones.

Using the following condition equivalent to submodularity works better in practice. For $A \subseteq S$ and $f, g \in S - A$,

$$\rho(A) + \rho(A \cup f \cup g) \leq \rho(A \cup f) + \rho(A \cup g).$$
Therefore, the feasible region of an integer program gives all k-polymatroids on a fixed ground set. Many of these will of course be isomorphic.

The objective function of the integer program is immaterial. We want all solutions, not just “optimal” ones.

Using the following condition equivalent to submodularity works better in practice. For $A \subseteq S$ and $f, g \in S - A$,

$$\rho(A) + \rho(A \cup f \cup g) \leq \rho(A \cup f) + \rho(A \cup g).$$

Parallelism is easily achieved by splitting the computation into many small integer programs, each extending a single polymatroid.
Labeled versus Unlabeled Polymatroids

The catalog, however, contains unlabeled 2-polymatroids; i.e., it has one representative of each isomorphism class of 2-polymatroids.

Let $(\rho, \{1, \ldots, n\})$ be a polymatroid. By the Orbit-Stabilizer Relation, there are \(\frac{n!}{|Aut(\rho)|}\) isomorphic copies of \(\rho\) on the same ground set.
The catalog, however, contains unlabeled 2-polymatroids; i.e., it has one representative of each isomorphism class of 2-polymatroids.

Let \((\rho, \{1, \ldots, n\})\) be a polymatroid. By the Orbit-Stabilizer Relation, there are \(\frac{n!}{|\text{Aut}(\rho)|}\) isomorphic copies of \(\rho\) on the same ground set.

Fortunately, computing the automorphism group of a polymatroid can be reduced to computing the automorphism group of a (colored) graph. This can be found quickly with Brendan McKay’s \text{nauty} program.

The table in the next slide lists the number of labeled 2-polymatroids on the ground set \(\{1, \ldots, n\}\).
<table>
<thead>
<tr>
<th>rank \ n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>15</td>
<td>31</td>
<td>63</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>29</td>
<td>135</td>
<td>642</td>
<td>3199</td>
<td>16879</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>41</td>
<td>477</td>
<td>5957</td>
<td>87477</td>
<td>1604768</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>29</td>
<td>784</td>
<td>27375</td>
<td>1554077</td>
<td>189213842</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>477</td>
<td>41695</td>
<td>7109189</td>
<td>3559635761</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>135</td>
<td>27375</td>
<td>21937982</td>
<td>733133160992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>5957</td>
<td>7109189</td>
<td>86322358307</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>642</td>
<td>1554077</td>
<td>733133160992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>31</td>
<td>87477</td>
<td>3559635761</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3199</td>
<td>189213842</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>63</td>
<td>1604768</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1</td>
<td>16879</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>127</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>1</td>
<td>3</td>
<td>14</td>
<td>115</td>
<td>2040</td>
<td>109707</td>
<td>39445994</td>
<td>1560089623047</td>
</tr>
</tbody>
</table>
The open-source optimization suite SCIP (http://scip.zib.de/) is able to efficiently count the number of feasible solutions to integer programs. It took about 13 weeks, using SCIP, to verify the numbers in the previous table.

Important Technical Note: It was necessary to turn off all presolving options in SCIP in order to obtain accurate counts.

These two different methods of counting 2-polymatroids agree exactly.
Conjectures

Conjecture

Almost all k-polymatroids contain no element of rank less than k.

This would generalize the theorem that almost all matroids are loopless by Mayhew, Newman, Welsh, and Whittle (2011).

Conjecture

Almost all k-polymatroids are asymmetric.