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Questions and Problems

All graphs in this talk are finite and simple.

Let k be a non-negative integer. Let Gk denote the class of graphs
that can be constructed from K1 by repeatedly adding a vertex with at
most k neighbors or at most k non-neighbors.

Nested sequence: G0 ⊂ G1 ⊂ G2 ⊂ · · ·
Each containment is proper: for example a k -regular graph on 2k + 2
vertices is in Gk but not Gk−1.⋃
Gk is the set of all graphs.

Every Gk is closed under taking complements and under induced
subgraphs (but certainly not under taking subgraphs).

Forb(Gk ) consists of graphs G such that G /∈ Gk and G − v ∈ Gk for
every v ∈ V (G).

Goal: Understand Gk .

Problem: Determine Forb(Gk ).
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A graph obtained from a graph G by deleting some vertices is called an induced
subgraph of G.

A graph G is perfect if χ(H) = ω(H) for all induced subgraphs H of G. (Berge
1961)

A graph G is chordal if every induced cycle of G is a triangle. (Dirac 1961)

A graph G is threshold if there is a function w : V (G)→ R and a real number t
such that there is an edge between two distinct vertices u and v if and only if
w(u) + w(v) > t . (Chvátal-Hammer 1973)

A graph G is split if its vertex set can be partitioned into a clique and a stable
set. (Földes-Hammer 1977)

A graph G is weakly chordal if every induced cycle in G and G is either a
triangle or a square. (Hayward 1985)

Threshold ⊂ Split ⊂ Chordal ⊂ Weakly Chordal ⊂ Perfect
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Berge defined the class of perfect graphs and offered two conjectures, both destined to
become classic theorems.

Theorem (Perfect Graph Theorem - Lovász, 1972)

A graph is perfect if and only if its complement is perfect.

A hole in a graph is an induced cycle of length at least four. An antihole in a graph is an
induced cycle of length at least four in the complement of the graph.

Theorem (Strong Perfect Graph Theorem - Chudnovsky, Robertson, Seymour,
Thomas, 2006)

A graph is perfect if and only if contains neither an odd hole nor an odd antihole.

Corollary

Weakly chordal graphs are perfect.
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Forbidden induced subgraph characterization of
threshold graphs, split graphs and perfect graphs

Threshold ⊂ Split ⊂ Chordal ⊂ Weakly Chordal ⊂ Perfect

Theorem (Chvátal-Hammer 1973)

A graph is threshold if and only if it contains no induced subgraph isomorphic to
2K2,P4, or C4.

Theorem (Földes-Hammer 1977)

A graph is split if and only if it contains no induced subgraph isomorphic to 2K2,C4, or
C5.

Theorem (Strong Perfect Graph Theorem - Chudnovsky, Robertson, Seymour,
Thomas, 2006)

A graph is perfect if and only if contains neither an odd hole nor an odd antihole.
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Nested sequence: G0 ⊂ G1 ⊂ G2 ⊂ · · ·

Definition

A graph G is said to be threshold if there is a function w : V (G)→ R and a real
number t such that there is an edge between two distinct vertices u and v if and only if
w(u) + w(v) > t .

Consider a threshold graph G. Let vmax be a vertex with maximum weight and let vmin
be a vertex with minimum weight. If the sum of their weights is greater than the
threshold then vmax is a dominating vertex; else vmin is an isolated vertex. In fact,

A graph G is threshold if and only if G has a vertex ordering
v1, · · · , vn such that for every i (1 ≤ i ≤ n) the degree of vi in
G : {v1, · · · , vi} is 0 or i − 1.

Thus G0 is the class of threshold graphs.

Let us call a graph G mock-threshold if G ∈ G1.

In other words, a graph G is said to be mock-threshold if there is a
vertex ordering v1, · · · , vn such that for every i (1 ≤ i ≤ n) the
degree of vi in G : {v1, · · · , vi} is 0, 1, i − 2, or i − 1. Such an
ordering will be called MT-ordering.
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Motivation

Trees are in some sense the simplest of all graphs but threshold
graphs exclude most of them.

Excluding a path of length three is too restrictive.

Relax the definition without getting out of the class of perfect graphs.
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As an easy consequence of the definition, we have the following.

Proposition

Let G be a graph on n vertices with 1 < δ(G) ≤ ∆(G) < n − 2. Then G is not
mock-threshold.

The complement of a mock-threshold graph is also mock-threshold. Although the class
of mock-threshold graphs is not closed under taking subgraphs, it is closed under
taking induced subgraphs.
We are looking for a forbidden induced subgraph characterization for the class of
mock-threshold graphs.

Proposition

A forest is a mock-threshold graph.

Proposition

Kn and K2,n are mock-threshold.
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Proposition

Let n ≥ 5. Then both Cn and Cn are minimal non-mock-threshold graphs.

Corollary

A mock-threshold graph is weakly chordal, and hence, perfect.

For a positive integer k , the k -core of a graph G is the graph obtained from G by
repeatedly deleting vertices of degree less than k . It is routine to show that this is
well-defined.

Proposition

A graph is mock-threshold if and only if its 2-core is also mock-threshold.
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Graphs in Forb(G1) with 5 and 6 vertices

Proposition

Every graph on at most five vertices except C5 is mock-threshold.

Proposition

There are exactly eight 6-vertex forbidden induced graphs for the class of
mock-threshold graphs. They are two disjoint triangles with 0, 1, 2 or 3 pairwise
non-adjacent edges joining the two triangles, and their complements.
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LetM be the set of following graphs:

Cycles of length at least 5 and their complements

K3,3, domino, K4 with a matching subdivided, and their complements

A list of graphs on 7 vertices

A list of graphs on 8 vertices

A finite set of split graphs (next slide)

Conjecture

A graph is mock-threshold if and only if does not contain a graph inM as an induced
subgraph.

Even if it goes wrong, we believe at least the following:

Conjecture

There exists a finite setM′ of graphs such that a graph G not containing a hole or
antihole of length ≥ 5 is mock-threshold if and only if does not contain a graph inM′
as an induced subgraph.

If true, what would the finiteness really mean?
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Mock-threshold and split

Some members of Forb(Gk ) ∩ GSplit :

G1: 8-cycle where one side of the bipartition a clique. (self-complementary)
G2: Path with 9 vertices where the side of the bipartition containing 5 vertices is a
clique.
G3: Disjoint union of three paths, each with 3 vertices, where the side of the bipartition
containing 6 vertices is a clique.
G4: Complement of G2.
G5: Complement of G3.

The absence of Gi , together with the easy fact that split graphs with bounded clique
size is a WQO under induced subgraphs should imply that Forb(Gk ) ∩ GSplit is finite.
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Loss of Well-Quasi-Ordering

A quasi-order is a pair (Q,≤), where Q is a set and ≤ is a reflexive and transitive
relation on Q. A quasi-order (Q,≤) is a well-quasi-order (WQO) if for every infinite
sequence q1, q2, . . . in (Q,≤) there exist i < j such that qi ≤ qj .

Threshold ⊂ Split ⊂ Chordal ⊂ Weakly Chordal ⊂ Perfect

Proposition

Threshold graphs are well-quasi-ordered under the induced subgraph relation. Split
graphs are well-quasi-ordered under the subgraph relation, but not under the induced
subgraph relation. Chordal graphs are not well-quasi-ordered under the subgraph
relation.

Proposition

Mock-threshold graphs are not well-quasi-ordered under the subgraph relation.
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Mock-threshold and chordal

Threshold ⊂ Split ⊂ Chordal ⊂ Weakly Chordal ⊂ Perfect

Proposition

A mock-threshold graph is chordal if and only if it has an MT-ordering v1, · · · , vn such
that for every i (1 ≤ i ≤ n) such that the degree of vi in G : {v1, · · · , vi} is i − 2, the
unique non-neighbor of vi in G : {v1, · · · , vi} is simplicial.
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Questions and Problems

Nested sequence: G0 ⊂ G1 ⊂ G2 ⊂ · · ·

1 Easy to design fast recognition algorithms for members in Gk . Can this be used
to design faster recognition algorithms for any of their superclasses?
For instance, how about weakly chordal graphs?

2 Optimization problems for graphs in this class.
For instance, how about Hamiltonicity? Polynomial-time for G0 and NP-Complete
for G3. What about G1 and G2?

3 What can we say about the Tutte polynomial of threshold graphs?
Mock-threshold graphs?

4 Christianson-Reiner Conjecture:
If G is a connected threshold graph, then Jac(G) ∼= A(G).
How about mock-threshold graphs?

5 Loss of perfection in G2. Do we at least have χ-boundedness in Gk for k ≥ 2?
6 Any connection to more mainstream problems like Gyárfas-Sumner or

Erdös-Hajnal?
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THANKS FOR YOUR ATTENTION.
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