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CHAPTER1
Introduction

1.1 What is combinatorics?
It is difficult to find a definition of combinatorics that is both concise and
complete, unless we are satisfied with the statement “Combinatorics is what
combinatorialists do.”

W.T. Tutte (in Tutte, 1969, p. ix)

Combinatorics is special.

Peter Cameron (in Cameron, 1994, p. 1)

Combinatorics is a fascinating but very broad subject. This makes it hard to classify,
but a common theme is that it deals with structures that are, in some sense, finite or
discrete. What sets combinatorics apart from other branches of mathematics is that it
focuses on techniques rather than results. The way you prove a theorem is of bigger im-
portance than the statement of the theorem itself. Combinatorics is also characterized
by what seems to be less depth than other fields. The statement of many results can be
explained to anyone who has seen some elementary set theory. But this does not imply
that combinatorics is shallow or easy: the techniques used for proving these results are
ingenious and powerful.

Combinatorial problems can take on many shapes. In these notes, we focus mostly
on the following three types:

Enumeration How many different structures of a given size are there?
Existence Does there exist a structure with my desired properties?
Extremal problems If I only look at structures with a specific property, how big can I

make them?

Techniques for solving these are varied, and anything is fair game! In these notes
we will see the eminently combinatorial tools of recursion, counting through bijection,
generating functions, and the pigeonhole principle, but also probability theory, algebra,
linear algebra (including eigenvalues), and even a little topology.
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2 INTRODUCTION

1.2 Some notation and terminology
If we use special notation, we normally explain it when it is first introduced. Some
notation crops up often enough that we introduce it here:
N The set of nonnegative integers {0,1, 2, . . .}
[n] The finite set of integers {1,2, . . . , n}
|X | The size of the set X , i.e. the number of elements in it.
P (X ) The power set of X , i.e. the set {Y : Y ⊆ X }.

Many of the structures we will study can be seen as set systems. A set system is a
pair (X ,F ), where X is a finite set and F ⊆P (X ). We refer to F as a set family. Often
we are interested in families with certain properties (“all sets have the same size”),
or families whose members have certain intersections (“no two sets are disjoint”), or
families that are closed under certain operations (“closed under taking supersets”).

An important example, that comes with a little bit of extra terminology, is that of a
graph:

1.2.1 DEFINITION. A graph G is a pair (V, E), where V is a finite set, and E is a collection of
size-2 subsets of V .

The members of V are called vertices, the members of E edges. If e = {u, v} is an
edge, then u and v are the endpoints. We say u and v are adjacent, and that u and v
are incident with e. One can think of a graph as a network with set of nodes V . The
edges then denote which nodes are connected. Graphs are often visualized by drawing
the vertices as points in the plane, and the edges as lines connecting two points.

1.2.2 DEFINITION. The degree of a vertex v, denoted deg(v), is the number of edges having v
as endpoint. A vertex of degree 0 is called isolated.

If you have never encountered graphs before, an overview of the most basic con-
cepts is given in Appendix A.

1.3 Elementary tools: double counting
Our first result can be phrased as an existential result: there is no graph with an odd
number of odd-degree vertices. Phrased more positively, we get:

1.3.1 THEOREM. Every graph has an even number of odd-degree vertices.

Proof: Let G = (V, E) be a graph. We find two ways to count the number of pairs (v, e),
where v ∈ V , e ∈ E, and v is incident with e. First we observe that each edge gives rise
to exactly two such pairs, one for each end. Second, each vertex appears in exactly one
such pair for each edge it is incident with. So we find

2|E|=
∑
v∈V

deg(v).

Since the left-hand side is even, so is the right-hand side, and the result follows from
this. �
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The handshaking lemma is an example of a very useful combinatorial technique:
double counting. By finding two ways to determine the size of a certain set (in this case
the set of pairs (v, e)), we can deduce new information. A classical example is Euler’s
Formula (see Problem A.7.5)

1.4 Elementary tools: the Pigeonhole Principle
The Pigeonhole Principle is an extremely basic observation: if n pigeons are divided
over strictly fewer than n holes, there will be a hole containing at least two pigeons.
More formally,

1.4.1 LEMMA (Pigeonhole Principle). Let N and K be finite sets and f : N → K a function. If
|N |> |K | then there exist m, n ∈ N such that f (m) = f (n).

A proof by induction is easily constructed. We illustrate the use by an easy example:

1.4.2 THEOREM. Let G = (V, E) be a graph. There exist vertices u, v ∈ V such that deg(u) =
deg(v).

Proof: Suppose G is a graph for which the theorem fails. If G has a vertex v of degree
0 then G − v is another such graph. Hence we assume no vertex has degree zero. If
|V | = n, then the possible degrees are {1,2, . . . , n− 1}. By the Pigeonhole Principle,
applied to the function deg, there must be vertices u, v such that deg(u) = deg(v). �

1.5 Where to go from here?
By design this course touches on a broad range of subjects, and for most manages only
to scratch the surface. At the end of each chapter will be a section with references to
textbooks that dive into the depths of the subject just treated. We will use this space in
this chapter to list some texts with a broad scope.

• van Lint and Wilson (2001), A Course in Combinatorics is a very readable book
containing 38 chapters on the most diverse topics. Notably missing from the
treatment is the probabilistic method.
• Cameron (1994), Combinatorics: Topics, Techniques, Algorithms also doesn’t fea-

ture the probabilistic method, has a similar (but smaller) range of topics, but
includes more algorithmic results.
• Lovász (1993), Combinatorial Problems and Exercises is again a very broad treat-

ment of combinatorics, but with a unique twist: the book is presented as a long
list of problems. The second part contains hints for each problem, and the third a
detailed solution.
• Jukna (2011), Extremal Combinatorics focuses mainly on extremal problems, but

still covers a very wide range of techniques in doing so.
• Aigner and Ziegler (2010), Proofs from THE BOOK is a collection of the most

beautiful proofs in mathematics. It has a significant section on combinatorics
which is well worth reading.





CHAPTER2
Counting

I N this chapter we focus on enumerative combinatorics. This branch of combina-
torics has, perhaps, the longest pedigree. It centers on the question “how many?”
We will start by exploring what answering that question may mean.

2.1 Ways to report the count
Consider the following example:

2.1.1 QUESTION. How many ways are there to write n− 1 as an ordered sum of 1’s and 2’s?

This question illustrates the essence of enumeration: there is a set of objects (ordered
sums of 1’s and 2’s), which is parametrized by an integer n (the total being n−1). What
we are really looking for is a function f : N→ N, such that f (n) is the correct answer
for all n. For Question 2.1.1 we tabulated the first few values of f (n) in Table 2.1.

n sums totaling n− 1 f (n)

0 - 0
1 0 (the empty sum) 1
2 1 1
3 2, 1+1 2
4 2+1, 1+2, 1+1+1 3
5 2+2, 2+1+1, 1+2+1, 1+1+2, 1+1+1+1 5

TABLE 2.1
Small values of f (n) for Question 2.1.1

2.1.1 Recurrence relations

Often a first step towards solving a problem in enumerative combinatorics is to find a
recurrence relation for the answer. In our example, we can divide the sums totaling n
in two cases: those having 1 as last term, and those having 2 as last term. There are
f (n) different sums of the first kind (namely all sums totaling n− 1, with a 1 added to
the end of each), and f (n− 1) different sums of the second kind. So we find

5



6 COUNTING

f (n+ 1) = f (n) + f (n− 1). (2.1)

Together with the initial values f (0) = 0 and f (1) = 1 the sequence is uniquely
determined.

With Equation (2.1) we have devised a straightforward way to compute f (n) using
roughly n additions. What we’ve gained is that we do not have to write down all
the sums any more (as in the middle column of the table): only the numbers in the
right column are needed, and in fact we need only remember the previous two rows
to compute the next. So the recurrence relation gives us an algorithm to compute the
answer for any value of n we want.

2.1.2 Generating function

Having the ability to compute a number does not mean we know all about it. Is the
sequence monotone? How fast does it grow? For questions like these we have a very
powerful tool, which at first sight may look like we are cheating: the generating func-
tion. A generating function is, initially, nothing but a formalism, a way to write down
the sequence. We write down an infinite polynomial in x , where f (n) is the coefficient
of xn:

F(x) :=
∑
n≥0

f (n)xn.

Again, in spite of the notation, we do (for now) not see this as a function, just as a
way to write down the sequence. In particular, we do not (yet) allow substitution of
anything for x .

An interesting thing happens if we try to turn each side of the recurrence relation
into a generating function. We multiply left and right by xn, and sum over all values of
n for which all terms are defined (in this case n≥ 1). This gives

∑
n≥1

f (n+ 1)xn =
∑
n≥1

f (n)xn+
∑
n≥1

f (n− 1)xn.

Next, we multiply both sides by x , and extract a factor of x from the last sum:

∑
n≥1

f (n+ 1)xn+1 = x

 ∑
n≥1

f (n)xn+ x
∑
n≥1

f (n− 1)xn−1

!

A change of variables in the first and third sum gives:

∑
m≥2

f (m)xm = x

 ∑
n≥1

f (n)xn+ x
∑
m≥0

f (m)xm

!

Finally we add terms to the sums to make all range from 0 to infinity:

∑
m≥0

f (m)xm− f (0)x0− f (1)x1 = x

 ∑
n≥0

f (n)xn− f (0)x0+ x
∑
m≥0

f (m)xm

!
.
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Now each of the sums equals F(x). using what we know about f (0) and f (1) we find

F(x)− x = x(F(x) + x F(x))

F(x) =
x

1− x − x2 ,

where, in the last sequence, we could define (1 − x − x2)−1 to be “the generating
function G(x) such that G(x)(1− x − x2) = 1”.

So far, we have only used the usual rules of polynomial addition and multiplication.
But now we look at the expression on the right, and consider it a function over the
real or complex numbers. There is an ε > 0 such that this function is defined for all
|x |< ε, and it follows that F(x) is actually the Taylor series of the function on the right
around x = 0. Now we can use a huge range of tools to further analyze our function.
In this case, we factor the denominator and use partial fraction expansion (we omit the
details):

F(x) =
x

1− x − x2 =
x

(1−τ1 x)(1−τ2 x)
=

1

τ1−τ2
(

1

1−τ1 x
− 1

1−τ2 x
), (2.2)

where

τ1 =
1+
p

5

2
,τ2 =

1−p5

2
.

The reason we went through all this trouble is because we want to express our gen-
erating function in terms of ones we “know”. And the most famous generating func-
tion/Taylor series is of course the geometric series:

1

1− x
=
∑
n≥0

xn.

Applying this to the two terms on the right of Equation (2.2), we get

F(x) =
1

τ1−τ2

 ∑
n≥0

(τ1 x)n−
∑
n≥0

(τ2 x)n
!
=

1p
5

∑
n≥0

(τn
1 −τn

2)x
n,

which gives us a new and rather insightful expression for f (n), almost for free!

2.1.3 Closed formula

Consider the following functions, each of which is the answer to a combinatorial count-
ing problem:

f1(n) = nn−2

f2(n) = n!
n∑

k=0

(−1)k/k!

f3(n) = the nearest integer to n!/e

f4(n) =
1p
5
(τn

1 −τn
2)
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A function like f1 is a completely satisfactory answer, but it is understandable that
few problems admit solutions like this. We often need sums in the answer, as in f2. This
is still fairly acceptable, especially since (as we will see soon) the terms of the sum have
combinatorial meaning: they correspond to certain partial counts! Formulas f3 and f4
are inherently non-combinatorial, since they involve terms that are not even rational
numbers (let alone integers). However, such formulas can still be insightful, and may
have a less cluttered appearance (case in point: f2 = f3).

We tend to refer to solutions that are pleasing as a solution in “closed form” or
a “closed formula”. We don’t want to make that term precise, but definitely allowed
are multiplication, division, addition, subtraction (each a finite number of times, in-
dependent of n), binomial coefficients with integers, exponentiation, and factorials.
Sometimes (as in f4), we are willing to accept arbitrary complex numbers.

While we don’t consider f2 to be a closed formula, it is still much more enlightening,
and much easier to compute than listing all objects it counts (as we will see). For more
convoluted sums, it becomes harder to see the value, and in fact it is possible to write
sums so complicated that evaluating them is no better than listing all objects.

Closed formulas for generating functions may involve classical functions like sin,
cos, exp, log, as well as exponentiation (including arbitrary real exponents) and multi-
plication, division, addition, subtraction.

2.1.4 Asymptotics

On occasion we are not interested in the exact count as much as we are interested in
asymptotics. The quality of a formula for f (n) can be tested by how easy it is to find
its asymptotic behavior. Returning to our example, we see that |τ2| < 1, so the second
term goes to zero. We write

f (n)∼ g(n)

to denote

lim
n→∞

f (n)
g(n)

= 1.

So in our example,

f (n)∼ 1p
5

�
1+
p

5

2

�n

.

It follows that f (n) grows exponentially fast as a function of n.

2.2 Counting by bijection: spanning trees
The most satisfying way to count is to relate the objects you’re counting to much simpler
objects, or (ideally) to objects which you already know how to count. In this section
we will see a classical example of this: Cayley’s Theorem for counting the number of
labeled spanning trees. That is, how many spanning trees are there on a fixed vertex
set V? It is clear that the nature of the elements of V is not important: we may as well
take V = [n], so the answer only depends on the size of V . Denote the number by t(n).
As before, we start with a table. The way we generate the trees is by first (using ad-hoc
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n spanning trees t(n)

1 1 1
2 1 2 1

3

1 2

3

2 3

1

3 1

2
3

4 ×4!/2 ×4 16

5 ×5!/2 ×5 ×5!/2 125

TABLE 2.2
The number of labeled spanning trees for n≤ 5 vertices

methods) determining all possible shapes of trees (“unlabeled trees on n vertices”), and
then finding all ways to assign the elements of V to their labels.

Interestingly, the numbers in the right are equal to nn−2. Cayley proved that this is
in fact true for all n:

2.2.1 THEOREM (Cayley’s Theorem). The number of spanning trees on a vertex set of size n is
nn−2.

We will give two proofs of this important theorem. The first is a proof by bijection.
We start by creating the Prüfer code (y1, . . . , yn−1) of a tree T on vertex set V = [n]. This
is done by recursively defining sequences (x1, . . . , xn−1) and (y1, . . . , yn−1) of vertices,
and (T1, . . . , Tn−1) of trees, as follows:
• T1 := T .
• For 1≤ i ≤ n− 1, let x i be the degree-1 vertex of Ti having smallest index.
• For 1≤ i ≤ n− 1, let yi be the neighbor of x i in Ti .
• For 1≤ i ≤ n−2, let Ti+1 := Ti− x i , that is, the tree obtained by removing vertex

x i and edge {x i , yi}.

2.2.2 EXAMPLE. Consider the tree in Figure 2.1. The sequence (x1, . . . , x9) = (3,4, 2,5, 6,7, 1,
8,9) and the sequence (y1, . . . , y9) = (2, 2,1, 1,7, 1,10, 10,10).

First proof of Theorem 2.2.1: Consider a Prüfer sequence (y1, . . . , yn−1). Since each
tree has at least two degree-1 vertices, vertex n will never be removed. Hence yn−1 = n.
Pick k ∈ {1, . . . , n− 2}. Since only degree-1 vertices are removed, it follows that the
degree of vertex v in tree Tk is one more than the number of occurrences of v among
(yk, . . . , yn−2). So the degree-1 vertices in Tk are precisely those vertices not occurring
in

{x1, . . . , xk−1} ∪ {yk, . . . , yn−2}. (2.3)
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12

3

4

5
6

7

8

9

10

FIGURE 2.1
Labeled tree

Now xk is the least element of [n] not in the set (2.3). Note that such an element
always exists, since set (2.3) has at most n − 2 members. It follows that, from the
sequence (y1, . . . , yn−2), we can reconstruct
• (y1, . . . , yn−1);
• (x1, . . . , xn−1),

and therefore we can reconstruct Tn−1, . . . , T1 = T (in that order). Note that each tree
gives a sequence, and each sequence allows us to reconstruct a unique tree (the pro-
cess of re-attaching xk to yk is completely deterministic), so the number of sequences
(y1, . . . , yn−2) and the number of trees must be equal. The number of sequences is
clearly nn−2, since each yi can take on n distinct values. �

The second proof is a clever construction that solves the problem through counting
more complicated structures – a technique that comes up more often (even the hand-
shake lemma can be seen as a simple instance of this). For digraphs and some basic
facts regarding trees, see Appendix A. The proof is due to Pitman (1999), and the
version below closely follows the one found in Aigner and Ziegler (2010).

Second proof of Theorem 2.2.1: A rooted forest is a set of trees, together with a marked
vertex in each tree, called the root of that tree. Let Fn,k be the set of rooted forests on
vertex set [n] with precisely k trees. Pick a rooted forest F , let T be a tree of F with
root r. For each vertex there is a unique path from the root to that vertex. It is not hard
to see that the edges of T can be replaced by directed edges so that in the resulting
digraph the root r is the only vertex without incoming edges. Moreover, this can be
done in exactly one way, so we will identify the members of Fn,k with their directed
counterparts. See Figure 2.2(a) for an example of a forest in F9,3.

(a)

8

6

1

23

4

5

7 9
(b)

8

6

1

23

4

5

7 9

FIGURE 2.2
(a) A rooted forest with three trees and edges directed away from the

roots; (b) A rooted forest with 4 trees contained in the rooted forest (a)
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We say that a rooted forest F contains a rooted forest F ′ if F (seen as a digraph)
contains F ′ (seen as a digraph). So all edges of F ′ are present in F , and directed the
same way. In Figure 2.2, the rooted forest (a) contains the rooted forest (b). Now we
define a refining sequence to be a sequence of rooted forests (F1, . . . , Fk) such that Fi ∈
Fn,i (and therefore has i trees), and such that Fi contains Fi+1. For a fixed Fk ∈ Fn,k
we define the following two counts:
• t(Fk): the number of rooted trees containing Fk;
• s(Fk): the number of refining sequences ending in Fk.

We are going to determine s(Fk) by looking at a refining sequence from two sides:
starting at Fk or starting at F1. First, consider the set of rooted forests with k− 1 trees
that contain Fk. To obtain such a forest from Fk we must add a directed edge. This edge
can start at any vertex v, but should end at a root r in a different tree from v. If r is in
the same tree then we have introduced a cycle; if r is not a root then the containment
relation fails since directions are not preserved. There are n choices for the start of
this edge, and (k − 1) choices for the root in another tree. Hence there are n(k − 1)
forests Fk−1 containing Fk. For each such Fk−1, in turn, there are n(k− 2) forests Fk−2
containing it. It follows that

s(Fk) = nk−1(k− 1)! (2.4)

For the other direction, let F1 be a fixed forest containing Fk. To produce a refining
sequence starting in F1 and ending in Fk, the edges in E(F1)\E(Fk) need to be removed
one by one. There are k − 1 such edges, and every ordering gives a different refining
sequence. There are t(Fk) choices for F1 by definition, so

s(Fk) = t(Fk)(k− 1)! (2.5)

By combining Equation (2.4) with (2.5) we find that t(Fk) = nk−1.
To finish off, observe that Fn,n contains but a single member, Fn say: all trees in

the forest are isolated vertices; and therefore all vertices are roots. It follows that t(Fn)
counts the number of rooted trees on n vertices. Since in each unrooted tree there are
n choices for the root, we find that the number of trees is

t(Fn)/n= (n
n−1)/n= nn−2. �

Different proofs yield different insights into a problem, and give different directions
for generalizations. The proof using Prüfer codes can be refined, for instance, by re-
stricting the allowable degrees of the vertices. The second proof can be used, without
too much trouble, to find the number of forests with k trees:

2.2.3 THEOREM. The number of forests with k trees on a vertex set of size n is knn−k−1.

Proof: For a rooted forest Fk ∈ Fn,k, define s′(Fk) to be the number of refining se-
quences (F1, . . . , Fn) having Fk as kth term. Each such sequence starts with a refining se-
quence F1, . . . , Fk (of which there are s(Fk) = nk−1(k−1)!, by the above), and each can
be completed by deleting the remaining edges of Fk one by one. There are (n− k) such
edges, and they can be ordered in (n− k)! ways. Hence s′(Fk) = nk−1(k− 1)!(n− k)!.
Note that this number is the same for all Fk, so we find that

|Fn,k|=
number of refining sequences F1, . . . , Fn

number of refining sequences using Fk
=

s(Fn)
s′(Fk)

=
�

n

k

�
knn−1−k.
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By observing that the k roots can be chosen in
�n

k

�
ways, the number of unrooted forests

with k trees on n vertices is knn−k−1 as claimed∗. �

We will see yet another proof of Cayley’s formula in Section 5.6. As a teaser, com-
pute the determinant of the (n− 1)× (n− 1) matrix




n− 1 −1 · · · −1

−1
... . . .

...
...

. . . . . . −1
−1 · · · −1 n− 1




.

2.3 The Principle of Inclusion/Exclusion
Given a set A and subsets A1 and A2, how many elements are in A but not in either of
A1 and A2? The answer, which is easily obtained from a Venn diagram, is |A| − |A1| −
|A2|+ |A1 ∩ A2|. The Principle of Inclusion/Exclusion (P.I.E.) is a generalization of this
formula to n sets. It will be convenient to introduce some notation: for V ⊆ [n], denote

AV :=
⋂
i∈V

Ai .

2.3.1 THEOREM (Principle of Inclusion/Exclusion). Let A be a finite set, and A1, . . . , An subsets
of A. Then

�����A\
� n⋃

i=1

Ai

������=
∑

V⊆[n]
(−1)|V ||AV |. (2.6)

Proof: We take the right-hand side of (2.6) and rewrite it, thus showing it is equal to
the left-hand side. Start by writing each set size as

|X |=
∑
a∈X

1.

In the right-hand side of (2.6), each element a ∈ A will now contribute to a number of
terms, sometimes with a plus sign, sometimes with a minus. We consider the contribu-
tion of a to each of the numbers |AV |. Assume that a occurs in m of the sets Ai . Then
a ∈ AV if and only if a ∈ Ai for all i ∈ V . This can only happen if V is a subset of the
m integers indexing sets containing a. There are precisely

�m
k

�
subsets of these indices

with exactly k elements. It follows that the contribution of a to the sum is

m∑
k=0

(−1)k
�

m

k

�
= (1− 1)m =

(
0 if m> 0

1 if m= 0,

where we used the binomial theorem and the fact that 00 = 1. It follows that a con-
tributes to the sum if and only if a is in none of the subsets Ai , and the result follows.�

∗This last line is a bit subtle!
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The Principle of Inclusion/Exclusion replaces the computation of the size of one set
by a sum of lots of sizes of sets. To actually make progress in determining the count,
it is essential to choose the sets Ai with care. This is best illustrated through a few
examples.

2.3.2 PROBLEM (Derangements). Suppose n people pick up a random umbrella from the
cloakroom. What is the probability that no person gets their own umbrella back?

More mathematically, we wish to determine the number of permutations π : [n]→ [n]
without a fixed point. A fixed point is an x ∈ [n] such that π(x) = x .

Let A := Sn, the set of all permutations of [n], and for each i ∈ [n], define

Ai := {π ∈ A : π(i) = i}.
Clearly |A| = n!. For a permutation in Ai the image of i is fixed, but the remaining
elements can be permuted arbitrarily, so |Ai| = (n− 1)!. Similarly, |AV | = (n− |V |)!.
Note that we’ve parametrized so that we specify the image of certain members of A.
This is important: the size of a set like “all permutations having precisely i fixed points”
is as hard to determine as the original problem! Now we find

|A\ (A1 ∪ · · · ∪ An)|=
∑

V⊆[n]
(−1)|V |(n− |V |)!=

n∑
k=0

(−1)k
�

n

k

�
(n− k)!= n!

n∑
k=0

(−1)k

k!

where the first equality is the P.I.E., and the second uses the (commonly occurring) fact
that |AV | depends only on the size of V , not on the specific elements in V . Then we
use that there are exactly

�n
k

�
subsets V of size k. The final equality is just rearranging

terms.
Now the probability that a random permutation is a derangement is

n∑
k=0

(−1)k

k!
−−−→
n→∞

1

e
.

In fact, one can show that the number of derangements equals the closest integer to
n!/e.

2.3.3 PROBLEM. Determine the number T (n, k) of surjections f : N → K where |N | = n and
|K |= k.

A surjection is an expensive name for a function that is onto. For ease of notation,
assume N = [n] and K = [k]. Let’s define A to be the set of all maps N → K , and for
i ∈ [k] define

Ai := { f ∈ A : no element mapped to i}.
Then |A| = kn, since each element of N can be mapped to any of the elements of K . If
no element gets mapped to i, then only k−1 choices are left, so |Ai|= (k−1)n; likewise
|AV |= (k− |V |)n. This gives

T (n, k) =
∑

V⊆[k]
(−1)|V |(k− |V |)n =

k∑
i=0

(−1)i
�

k

i

�
(k− i)n.
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We will look at these, and related, numbers later in this chapter.
For a third application of the Principle of Inclusion/Exclusion we refer to Section

2.6.

2.4 Generating functions
Generating functions form a powerful and versatile tool in enumerative combinatorics.
In this overview course we barely scratch the surface of the field. We will mostly employ
them for two purposes:
• Solve recurrence relations
• Decompose a counting problem into easier problems

We’ve seen an example of the first kind above, where we found an expression for the Fi-
bonacci sequence. The second kind will lead to taking products of generating functions.
We give another example.

2.4.1 EXAMPLE. In how many ways can change worth n cents be given using a combination
of pennies and nickels?

Let an denote the number of ways to give change from n cents using only pennies. Let
bn be the number of ways to give change from n cents using only nickels. Clearly an = 1
for all n≥ 0, and bn = 1 if n is divisible by 5, and 0 otherwise. Write

A(x) :=
∑
n≥0

an xn = 1+ x + x2+ · · ·= 1

1− x
.

B(x) :=
∑
n≥0

bn xn = 1+ x5+ x10+ · · ·= 1

1− x5 .

Now if we want to combine pennies and nickels, we could first allocate the number
of pennies, say k, and use nickels for the remainder. So the desired answer will be∑n

k=0 ak bn−k. If we look at the product of the generating functions, we get

A(x)B(x) =
∑
n≥0

 
n∑

k=0

ak bn−k

!
xn,

so the coefficient of xn contains exactly the right answer! Note that we can accommo-
date lots of extra side conditions in this method: use only an odd number of dimes, use
up to twelve nickels, and so on.

This decomposition into simpler problems is usually most successful in an unlabeled
context. For labeled problems often the exponential generating function is a better tool.

2.4.2 DEFINITION. Let ( f0, f1, . . .) be a sequence of integers. The exponential generating func-
tion of this sequence is

∑
n≥0

fn
xn

n!
.

The most famous exponential generating function is the one with sequence (1, 1, . . .).
We denote it by exp(x), or sometimes ex .
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Consider the product of two exponential generating functions A(x) and B(x):

A(x)B(x) =
∑
n≥0

 
n∑

k=0

ak

k!

bn−k

(n− k)!

!
xn =

∑
n≥0

 
n∑

k=0

�
n

k

�
ak bn−k

!
xn

n!
.

The term

n∑
k=0

�
n

k

�
ak bn−k

can be interpreted as assigning values to labeled items using processes a and b. An
example should make this more concrete:

2.4.3 EXAMPLE. How many strings of length n are there using the letters {a, b, c}, where
• a is used an odd number of times;
• b is used an even number of times;
• c is used any number of times?

The exponential generating function if we only use the symbol c is easy:

C(x) =
∑
n≥0

1 · xn

n!
= exp(x).

If we use only the symbol b then we can do it in one way if the string length is even,
and in no way if the length is odd:

B(x) = 1+
x2

2!
+

x4

4!
+ · · ·= exp(x) + exp(−x)

2

Similarly, if we use only a:

A(x) = x +
x3

3!
+

x5

5!
+ · · ·= exp(x)− exp(−x)

2

Using both a’s and b’s, we can first select the positions in which we want the symbol a,
and fill the remaining positions with the symbol b. This gives

∑n
k=0

�n
k

�
ak bn−k strings

– precisely the coefficient of xn in A(x)B(x). This product gives

A(x)B(x) =
exp(x)2− exp(−x)2

4
.

Similarly, if we use a’s, b’s, and c’s, we first select where the a’s and b’s go, and fill the
remaining positions with c’s. We find

A(x)B(x)C(x) =
exp(3x)− exp(−x)

4
,

from which we deduce easily that the answer is (3n− (−1)n)/4 strings.
This cursory treatment does little justice to the theory of generating functions. We

hope the examples above, and several more that will appear below, suffice to get some
feeling for the uses of this powerful tool, and that common mathematical sense will do
the rest. At the end of this chapter we present some suggestions for further reading.
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2.5 The Twelvefold Way
In this section we will consider a number of elementary counting problems that can be
applied in a diverse set of contexts. Specifically, let N and K be finite sets, with sizes
|N |= n and |K |= k. We wish to count the number of functions f : N → K , subject to a
number of conditions:
• f can be unrestricted, or surjective (onto), or injective (one-to-one);
• N can consist of labeled/distinguishable objects, or of unlabeled objects;
• K can consist of labeled or unlabeled objects.

In the unlabeled case, formally we count equivalence classes of functions. For instance,
if N is unlabeled, then two functions f , g are considered equivalent if there is a per-
mutation π of N such that f = g ◦ π (where ◦ denotes function composition). More
intuitively: we think of a labeled set N as a set of numbers, and of an unlabeled set as
a set of eggs; we think of a labeled set K as a set of paint colors, and of an unlabeled
set K as a set of identical jars (so shuffling them around does not change the function).

The combinations of these choices lead to twelve counting problems, which are
known as The Twelvefold Way. The results are summarized in Table 2.3.

N K any f injective f surjective f

labeled labeled kn (k)n k!S(n, k)

unlabeled labeled
�

n+ k− 1

k− 1

� �
k

n

� �
n− 1

k− 1

�

labeled unlabeled S(n, 1) + · · ·+ S(n, k)

(
1 if k ≥ n

0 if k < n
S(n, k)

unlabeled unlabeled pk(n+ k)

(
1 if k ≥ n

0 if k < n
pk(n)

TABLE 2.3
The Twelvefold Way

We will work our way through them in decreasing order of satisfaction, as far as the
answer is concerned. Table 2.4 shows in which subsection a result can be found. Along
the way we will look at some related problems too.

N K any f injective f surjective f

labeled labeled 2.5.1 2.5.1 2.5.3
unlabeled labeled 2.5.2 2.5.1 2.5.2
labeled unlabeled 2.5.3 2.5.1 2.5.3
unlabeled unlabeled 2.5.4 2.5.1 2.5.4

TABLE 2.4
The Twelvefold Way: subsection reference
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2.5.1 Easy cases

We start with both N and K labeled, and no restrictions on f . In that case there are k
choices for the first element of N , then k choices for the second, and so on. The total
number of functions is therefore kn.

If f is injective, then each element of K can be the image of at most one element
from N . This means we have k choices for the image of the first element of N , then
(k − 1) choices for the second, and so on. The total number of injective functions is
therefore

(k)n := k(k− 1) · · · (k− n+ 1),

which is sometimes called the falling factorial.
Next, suppose f is still injective but N is unlabeled. Then – going with the eggs and

paint analogy – all that matters is which paints get used: we get to paint at most one
egg with each color anyway. This results in a number

�
k

n

�

of injective functions f . Note that, if we decide to label N after all, this can be done in
n! ways, which gives a combinatorial explanation of

�
k

n

�
=
(k)n
n!

.

If K is unlabeled and f injective, then – going with the jar analogy – we need to put
each element of N into its own jar; since jars are indistinguishable, the only condition
is that there are enough jars, in which case there is 1 such function; otherwise there
are none. This completes the first entry of the table, as well as the second column.

2.5.2 Painting eggs

Now we finish off the row with unlabeled N and labeled K . This problem can be in-
terpreted as painting n eggs with set of colors K . First we consider the case without
restrictions on f . Let us call the number to be found e(n, k) for the moment. In explor-
ing this problem we can start once more with a table, hoping for inspiration: The first

k\n 0 1 2 3 4 5

0 1 0 0 0 0 0
1 1 1 1 1 1 1
2 1 2 3 4 5
3 1 3 6 10
4 1 4 10
5 1 5
6 1

TABLE 2.5
Painting eggs



18 COUNTING

column, as well as the first two rows, are easy to find. Further down the table seems to
take on the shape of Pascal’s triangle! This suggest the following recursion should be
true:

e(n, k) = e(n, k− 1) + e(n− 1, k).

This can be proven as follows: consider painting n eggs with k colors. How many times
is the last color used? If it is not used at all, then we are painting n eggs with k − 1
colors; if it is used at least once, then we can paint one egg with that color, put that egg
aside, and continue painting the remaining n− 1 eggs with k colors.

We now know that e(n, k) is related to binomial coefficients, and it is not too hard
to find

e(n, k) =
�

n+ k− 1

k− 1

�
.

One can check that this satisfies both the recursion and the boundary conditions (the
first row/column). But there is a more interesting and direct proof. We can imagine
the colors as being boxes in which we put the eggs. The boxes are put in a fixed order,
since the paints are distinguishable. A stylized picture of that situation is the following:

If we forget about the outermost lines (since they are always there anyway), and squint,
we suddenly see something completely different:

0010010001101000

Here we have a string of n+ k−1 symbols (n “eggs” and k−1 “walls”), of which k−1
symbols are “walls”. And e(n, k) is precisely the number of such objects!

Finally, let us look at surjective f . In that case each color is used at least once.
Inspired by the way we arrived at the recursion, we can simply start by painting one
egg with each color (this takes care of k eggs), and paint the remaining eggs arbitrarily.
This gives

�
(n− k) + k− 1

k− 1

�
=
�

n− 1

k− 1

�

surjective functions. We note for use below that this number is equal to the number of
solutions to

x1+ x2+ · · ·+ xk = n

in positive integers x1, . . . , xk.

2.5.3 Stirling Numbers of the first and second kind

We have already determined the number T (n, k) of surjections N → K in Section 2.3,
but here is a different derivation using exponential generating functions. We write

Fk(x) =
∑
n≥0

T (n, k)
xn

n!
.
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Again we interpret the problem as the number of ways to paint n integers using k
colors, using each color at least once. If k = 1 then we can paint any set containing at
least one element in exactly one way. So we find

F1(x) =
∞∑

n=1

xn

n!
= exp(x)− 1.

For k = 2, we can first pick i items from N to paint with color 2; all remaining items
get painted with color 1. The number of ways to do this is

n−1∑
i=1

�
n

i

�
=

(
2n− 2 if n> 0

0 else.

Looking back at the multiplication formula for exponential generating functions, and
remembering that the constant term of F1(x) is zero, we find

F2(x) = F1(x)F1(x) = (exp(x)− 1)2.

Likewise,

Fk(x) = Fk−1(x)F1(x) = (exp(x)− 1)k.

This can, in turn, be expanded to

Fk(x) =
k∑

j=0

�
k

j

�
(−1) j exp(x)k− j ,

from which we read off

T (n, k) =
k∑

j=0

�
k

j

�
(−1) j(k− j)n

as before.
Next, what happens if K is unlabeled? Since each jar has at least one item from N

in it, and those items are labeled, there are k! different ways to put labels back on the
jars for each function. So if we call the number we are looking for S(n, k), then

S(n, k) =
T (n, k)

k!
.

As can be guessed from the way we filled Table 2.3, the numbers S(n, k) are more
fundamental than the T (n, k). The S(n, k) are known as Stirling numbers of the second
kind. We note a few facts:

2.5.1 LEMMA. The Stirling numbers of the second kind satisfy the following recursion:

S(n, k) = kS(n− 1, k) + S(n− 1, k− 1).

2.5.2 LEMMA. The following holds for all integers n, x ≥ 0:

xn =
n∑

k=0

S(n, k)(x)k.
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We leave the recursion as an exercise; to see the second lemma, count the functions
[n]→ [x] in two ways. Clearly there are xn of them. Now count them, split up by the
image of f . If this image equals Y for some set Y of size k, then there are k!S(n, k)
surjections [n]→ Y . Moreover, there are

�x
k

�
ways to choose such a set Y , giving

xn =
n∑

k=0

�
x

k

�
k!S(n, k)

from which the result follows.
This same idea can be used to fill up the entry corresponding to unrestricted func-

tions f : N → K with K unlabeled: split the count up by the image of f . Since K is
unlabeled, in this case only the size counts, immediately giving

S(n, 1) + S(n, 2) + · · ·+ S(n, k).

Now let’s look at the Stirling numbers of the first kind, which will be denoted by
s(n, k). We will start by determining a closely related set of numbers. Let c(n, k) be the
number of permutations with exactly k cycles†

Note that the total number of permutations is n!. We can determine without diffi-
culty that
• c(0, 0) = 1;
• c(0, k) = 0 for k > 0;
• c(n, 0) = 0 for n> 0;
• c(n, 1) = (n− 1)! for n≥ 0.

From the last line we conclude

∑
n≥0

c(n, 1)
xn

n!
=
∑
n≥1

xn

n
=− log(1− x).

Using the same reasoning as above for Fk(x) (and correcting for the fact that cycles are
unordered, i.e. unlabeled), we find

∑
n≥0

c(n, k)
xn

n!
=

1

k!
(− log(1− x))k.

An interesting formula for these numbers is the following

2.5.3 LEMMA. The number c(n, k) of permutations of [n] with exactly k cycles equals the coef-
ficient of yk in

(y + n− 1)(y + n− 2) · · · (y + 1)y.

Sketch of proof: This is easy to obtain by exchanging sums in the expression

∑
m≥0

(− log(1− x))m
ym

m!
. �

†You may want to refresh your mind regarding cycle notation of permutations.
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Now the Stirling numbers of the first kind are signed versions of the numbers c(n, k):

s(n, k) := (−1)n+kc(n, k).

The following results can be deduced (we omit the proofs):

2.5.4 LEMMA.

∑
n≥0

s(n, k)
xn

n!
=

1

k!
(log(1+ x))k.

2.5.5 LEMMA. For all integers n, x ≥ 0 we have

n∑
k=0

s(n, k)xn = (x)n.

Now by either substituting one exponential generating function into the other, or
by substituting the result from one of Lemmas 2.5.5 and 2.5.2 into the other, we obtain
the following

2.5.6 THEOREM. Consider the infinite matrices A and B, where An,k = S(n, k) and Bn,k = s(n, k)
for all n, k ≥ 0. Then

AB = BA= I∞,

where I∞ is an infinite matrix with ones on the diagonal and zeroes elsewhere.

2.5.4 Partitions

Finally we arrive at the case where both N and K are unlabeled. This problem can
be seen as partitioning a stack of eggs. Note that the parts are indistinguishable, so
only the number of parts of a certain size counts. We denote by pk(n) the number of
partitions with at most k parts, and by pk(n) the number of partitions with exactly k
parts. These numbers are related: if we set apart k eggs, one to be put in each part,
then we can distribute the remaining eggs without restriction, so

pk(n) = pk(n− k)

pk(n) = pk(n+ k).

A recursion for pk(n) can be found as follows: we distinguish whether there is a part of
size one (in which case the remaining n−1 eggs are divided into k−1 parts) or not (in
which case we can remove one egg from each part and still have k parts). This leads to

pk(n) = pk−1(n− 1) + pk(n− k).

We can visualize a partition by a Ferrers diagram (see Figure 2.3), where each row
corresponds to a part of the partition, and the rows are sorted in order of decreasing
length. The shape of the diagram is the vector λ of row lengths.

We will determine the generating function of pk(n). Note that pk(n) counts the
number of Ferrers diagrams with n dots and at most k rows. The key observation is
that this is equal to the number of Ferrers diagrams with n dots and at most k dots
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FIGURE 2.3
Ferrers diagram of shape λ= (4, 3,1, 1,1).

per column! The Ferrers diagram is uniquely determined by specifying, for all i, the
number αi of columns of length i. Therefore pk(n) is the number of solutions to

α1+ 2α2+ · · ·+ kαk = n.

With this we find (by changing the order of summation around):
∑
n≥0

pk(n) =
∑
n≥0

∑
α1,...,αk:

α1+···+kαk=n

1 · xn

=
∑
α1≥0

∑
α2≥0

· · ·
∑
αk≥0

xα1+2α2+···+kαk

=


∑
α1≥0

xα1




∑
α2≥0

x2α2


 · · ·


∑
αk≥0

xkαk




=
k∏

i=1

1

1− x i .

Note that we can obtain a generating function for the number p(n) of partitions of the
integer n by letting k go to infinity:

∑
n≥0

p(n)xn =
∞∏

i=1

1

1− x i .

Recall that we have T (n, k) = k!S(n, k). No such relationship exists between pk(n)
and

�n−1
k−1

�
, but we can show that, if we fix k and let n grow, then asymptotically this is

still close to being true:

2.5.7 THEOREM. For fixed k,

pk(n)∼
nk−1

k!(k− 1)!
.

Proof: We start by establishing a lower bound. If we impose an order on the parts of
the partition, we get a solution of

x1+ x2+ · · ·+ xk = n

in positive integers. The number of solutions is equal to the number of surjections
N → [k] with N unlabeled, so

�n−1
k−1

�
. But if two parts have the same size, then this



2.6. LE PROBLÈME DES MÉNAGES 23

solution is generated twice in the process of imposing an order on the partition, so we
overcount:

k!pk(n)≥
�

n− 1

k− 1

�
. (2.7)

For the converse we do a trick. Consider pk(n) as the number of solutions to

x1+ x2+ · · ·+ xk = n

x1 ≥ x2 ≥ · · · ≥ xk ≥ 1

Given such a solution, define

yi := x i + k− i.

We find that

yi+1 = x i+1+ k− i− 1≤ x i + k− i− 1= yi − 1,

so the yi are all different. Clearly they add up to n+ k(k−1)
2

. It follows that each way to
order the yi gives a distinct solution to

y1+ y2+ · · ·+ yk = n+
k(k− 1)

2
.

We know the total number of solutions to this equation, so we find

k!pk(n)≤
�

n+ k(k−1)
2
− 1

k− 1

�
. (2.8)

Both bounds (2.7) and (2.8) are dominated by the term nk−1

(k−1)! , from which the result
follows. �

2.6 Le problème des ménages
In this section we look at a very classical problem from combinatorics that can be solved
using ideas introduced in this chapter. The problem is commonly known by its French
name, “Le Problème des Ménages”, and goes as follows:

Des femmes, en nombre n, sont rangées autour d’une table dans un ordre
déterminé; on demande quel est le nombre des manières de placer leurs
maris respectifs, de telle sorte qu’un homme soit placé entre deux femmes
sans se trouver à côté de la sienne?

—Lucas (1891, p. 215)
In English, this can be recast as follows:

2.6.1 PROBLEM. A total of n couples (each consisting of a man and a woman) must be seated
at a round table such that men and women alternate, women sit at odd-numbered
positions, and no woman sits next to her partner. How many seating arrangements are
possible?
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Note that we have changed the problem slightly: Lucas has already seated the women
and only asks in how many ways we can seat the men. The solution to Lucas’ problem
will be our solution to Problem 2.6.1 divided by n!. This change will, in fact, make the
problem easier to deal with. We assume that the seats are distinguishable (i.e. they are
numbered).

Let us start by giving names to things. Let 1, . . . , n be the set of couples, and let
A be the set of all seating arrangements in which women occupy the odd-numbered
positions. We are looking at the members in A for which no couple is seated side-by-
side, so it is natural to try the Principle of Inclusion/Exclusion. For V ⊆ [n], denote by
AV the set of arrangements in which the couples in set V break the rule. By symmetry,
the size |AV | depends only on the size of V , not on the specific choice of couples. So,
if |V | = k, denote ak := |AV |. By the Principle of Inclusion/Exclusion we find that the
number we want is

n∑
k=0

(−1)k
�

n

k

�
ak. (2.9)

Next, denote by bk the number of ways in which k disjoint pairs of side-by-side chairs
can be picked. See Figure 2.4 for such an arrangement. Then

ak = bkk!(n− k)!(n− k)!, (2.10)

since our k “bad” couples can be arranged over the bad pairs of seats in k! ways; after
that we can seat the remaining women in (n − k)! ways, and the remaining men in
(n− k)! ways.

M

M

M

M

M

W

W

W

W

W

FIGURE 2.4
A seating arrangements with three known couples sitting side-by-side.

It remains to determine bk. Cut the circle open at a fixed point. We can erase the
letters in the circles (since they are fixed anyway), and the circles inside the rectangles
(since there are two anyway) to get a picture of one of the following types:
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In the first we have a sequence of 2n− k symbols, k of which are boxes, and the
remaining being circles. There are, of course,

�2n−k
k

�
such sequences. In the second,

ignoring the box split over the first and last position, we have 2n− k−1 symbols, k−1
of which are boxes. It follows that

bk =
�

2n− k

k

�
+
�

2n− k− 1

k− 1

�
=
�

2n− k

k

�
+

k

2n− k

�
2n− k

k

�
=

2n

2n− k

�
2n− k

k

�
.

(2.11)

Combining (2.11), (2.10) and (2.9) and simplifying a little, we get the solution

n!
n∑

k=0

2n

2n− k

�
2n− k

k

�
(n− k)!(−1)k.

2.7 Young Tableaux
If we take a Ferrers diagram and replace the dots by squares, then we get a Young
diagram. This change is interesting enough to warrant its own name, because new
avenues open up: we get boxes that we can fill! In this section we will fill them in a
very specific way:

2.7.1 DEFINITION. A Young Tableau of shape λ is
• a Young Diagram of shape λ. . .
• . . . filled with the numbers 1 to n, each occurring once. . .
• . . . such that each row and each column is increasing.

See Figure 2.5(a) for an example. Young Tableaux play an important role in the theory
of representations of the symmetric group. In this section we will content ourselves with
counting the number f (n1, . . . , nm) of tableaux of a specific shape λ= (n1, . . . , nm). We
start by finding a recursion.

2.7.2 LEMMA. f satisfies
(i) f (n1, . . . , nm) = 0 unless n1 ≥ n2 ≥ · · · ≥ nm ≥ 0;

(ii) f (n1, . . . , nm, 0) = f (n1, . . . , nm);
(iii) f (n1, . . . , nm) = f (n1− 1, n2, . . . , nm) + f (n1, n2− 1, n3, . . . , nm) + · · ·

+ f (n1, . . . , nm−1, nm− 1) if n1 ≥ n2 ≥ · · · ≥ nm ≥ 0;
(iv) f (n) = 1 if n≥ 0.

Moreover, these four properties uniquely determine f .

(a) (b) (c)

41 3 7 11

2

6

8

5 10 12

9

8

6

3

1

6

4

1

2 1

4 3 1

FIGURE 2.5
(a) A Young tableau; (b) A hook; (c) Hook lengths.
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Proof: Properties (i), (ii) and (iv) are easily verified. For (iii), observe that the box
containing the number n must be the last box in one of the rows. Removing that box
gives the recursion (with terms being 0 if n is not also the last in its column). Clearly
we can compute f (n1, . . . , nm) recursively from these conditions. �

There is a very nice description of f . It uses another definition:

2.7.3 DEFINITION. A hook of a Young tableau is a cell, together with all cells to the right of
it, and all cells below it. The hook length is the number of cells in a hook.

See Figure 2.5(b) for an example of a hook; in Figure 2.5(c) the number in each cell
denotes the length of the corresponding hook.

2.7.4 THEOREM (Hook Length Formula). The number of Young tableaux of shape λ= (n1, . . . ,
nm), with total number of cells n, equals n! divided by the product of all hook lengths.

Our goal will be to prove this theorem. Unfortunately the best way to do this is by
reformulating it in somewhat less attractive terms:

2.7.5 THEOREM.

f (n1, . . . , nm) =
∆(n1+m− 1, n2+m− 2, . . . , nm) · n!

(n1+m− 1)!(n2+m− 2)! · · ·nm!
, (2.12)

where

∆(x1, . . . , xm) =
∏

1≤i< j≤m

(x i − x j).

Proof that Theorem 2.7.5 implies Theorem 2.7.4: Consider a Young diagram with the
hook length written in each cell. The first entry in the first row is n1 + m − 1. The
second entry in the first row would be n1 + m − 2, except if the second column is
shorter than the first. In fact, the first missing number will be (n1+m− 1)− nm. After
that the sequence continues until we run out of cells in row m − 1, at which point
the term (n1 + m− 1)− (nm−1 + 1). We see that the first row contains the numbers
1, 2, . . . , n1+m−1, except for (n1+m−1)− (n j+m− j) for 2≤ j ≤ m. This argument
can be repeated for each row, showing the product of all hook lengths to be

(n1+m− 1)!(n2+m− 2)! · · ·nm!

∆(n1+m− 1, n2+m− 2, . . . , nm)
,

from which the Hook Length Formula follows. �

The proof of Theorem 2.7.5 follows by showing that formula (2.12) satisfies all four
properties of Lemma 2.7.2. For the third condition the following lemma will be very
useful:

2.7.6 LEMMA. Define

g(x1, . . . , xm; y) := x1∆(x1+ y, x2, . . . , xm) + x2∆(x1, x2+ y, . . . , xm) + · · ·
+ xm∆(x1, . . . , xm+ y).
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Then

g(x1, . . . , xm; y) =
�

x1+ · · ·+ xm+
�

m

2

�
y
�
∆(x1, . . . , xm).

Proof: Observe that g is a homogeneous polynomial of degree one more than the
degree of ∆(x1, . . . , xm). Swapping x i and x j changes the sign of g (since ∆ can be
seen to be alternating). Hence if we substitute x i = x j = x then g becomes 0. It follows
that x i − x j divides g. Hence ∆(x1, . . . , xm) divides g. The result clearly holds if we
substitute y = 0, so it follows that we need to find a constant c such that

g(x1, . . . , xm; y) = (x1+ · · ·+ xm+ c y)∆(x1, . . . , xm).

If we expand the polynomial and focus on the terms containing y , we find

x i y

x i − x j
∆(x1, . . . , xm) and

−x j y

x i − x j
∆(x1, . . . , xm)

for 1≤ i < j ≤ m. Summing these gives the desired result. �

Proof of Theorem 2.7.5: As mentioned, we only need to show that formula (2.12) sat-
isfies all four properties of Lemma 2.7.2. The first, second, and fourth properties are
straightforward; for the third, use Lemma 2.7.6 with x1 = n1+m−1, . . . , xm = nm and
y =−1. �

2.8 Where to go from here?
Enumerative combinatorics is one of the older branches of combinatorics, and as such
there is a wealth of literature available. Moreover, most textbooks on combinatorics
will contain at least some material on the subject. We mention a few more specialized
books.

• Wilf (1994), Generatingfunctionology illustrates the versatility of generating func-
tions in tackling combinatorial problems. It is available as a free download too!
• Flajolet and Sedgewick (2009), Analytic Combinatorics takes the analytic view-

point of generating functions and runs with it.
• Stanley (1997), Enumerative Combinatorics. Vol. 1 is an extensive treatment of

the field of enumerative combinatorics. The text is aimed at graduate students.
• Goulden and Jackson (1983), Combinatorial Enumeration is another thorough,

graduate-level text that starts with a formal development of the theory of gener-
ating functions. Both this volume and Stanley’s books are considered classics.

Finally a resource that is not a book: the Online Encyclopedia of Integer Sequences
is exactly what it says on the box. Input the first few terms of a sequence, hit the search
button, and you will be presented with a list of all sequences in the database containing
yours, together with a wealth of information and many references. This beautiful and
useful resource was conceived and, until recently, maintained by Neil J.A. Sloane. Its
current format is a moderated wiki.

• The On-Line Encyclopedia of Integer Sequences, http://oeis.org.

http://oeis.org




CHAPTER3
Ramsey Theory

R AMSEY THEORY can be summarized by the phrase “complete disorder is impos-
sible”. More precisely, no matter how chaotic a structure you come up with, if
only it is large enough it will contain a highly regular substructure. The tradi-

tional example is the following:

3.0.1 PROBLEM. Prove that, among any group of six people, there is either a group of three,
any two of whom are friends, or there is a group of three, no two of whom are friends.

More mathematically: in any graph on six vertices there is either a triangle or a set of
three vertices with no edges between them. Ramsey’s Theorem is a vast generalization
of this.

3.1 Ramsey’s Theorem for graphs
We will start with an “in-between” version of the theorem, which has an illustrative
proof. Compared to the example in the introduction we are looking for complete sub-
graphs on l vertices, rather than triangles, and we are looking for s relations, rather
than the two relations “friends” and “not friends”. From now on we will refer to those
relations as colors.

3.1.1 THEOREM. Let s ≥ 1 and l ≥ 2 be integers. There exists a least integer R(l; s) such that,
for all n ≥ R(l; s), and for all colorings of the edges of Kn with s colors, there exists a
complete subgraph on l vertices, all edges of which have the same color.

We will refer to such a single-colored subgraph (as well as any configuration in this
chapter that uses a single color) as monochromatic.

Proof: If s = 1 (i.e. all edges get the same color) then clearly R(l; s) = l. Hence we can
assume s ≥ 2. We will show that

R(l; s)≤ s(l−1)s+1.

Pick an integer n ≥ s(l−1)s+1, and an s-coloring χ of the edges of Kn (so χ is a function
χ : E(Kn)→ [s]). Define a set S1 := [n], and recursively define vertices x i , colors ci ,
and sets Si+1 for i = 1,2, . . . , (l − 1)s as follows:

29
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• Pick any vertex x i ∈ Si . Define

Ti, j := {u ∈ Si \ {x i} : χ(u, x i) = j}.

• Let j0 be such that Ti, j0 is maximal. Let Si+1 := Ti, j0 and ci := j0.
Note that the size of Ti, j0 must be at least the average size of the Ti, j , so

|Si+1| ≥
|Si| − 1

s
.

3.1.1.1 CLAIM. |Si+1| ≥ s(l−1)s+1−i .

Proof: This is clearly true for i = 0. Assume it holds for Si; then

|Si+1| ≥
|Si| − 1

s
≥ s(l−1)s+1−(i−1)− 1

s
= s(l−1)s+1−i − 1

s
.

The claim follows since |Si+1| is an integer and 1
s
< 1. �

In particular, |S(l−1)s+1| ≥ 1, so our sequences are well-defined.
Consider the sequence of colors (c1, . . . , c(l−1)s+1). Some color must occur at least l

times, say in vertices

{x i1 , . . . , x il }.

By our construction, the subgraph on these vertices is monochromatic. �

An immediate consequence of Ramsey’s Theorem is the following:

3.1.2 COROLLARY. For each l there exists an n such that each graph on at least n vertices con-
tains either a complete subgraph on l vertices or a stable set of size l.

3.2 Ramsey’s Theorem in general
Ramsey’s Theorem in full can be obtained by generalizing the result above in the fol-
lowing directions:

• We let the size of the monochromatic subset depend on the color;
• Instead of coloring the edges of Kn (and therefore the size-2 subsets of [n]), we

color the size-r subsets of [n], for some fixed r.

This yields the following result:

3.2.1 THEOREM (Ramsey’s Theorem). Let r, s ≥ 1 be integers, and let qi ≥ r (i = 1, . . . , s) be
integers. There exists a minimal positive integer Rr(q1, . . . , qs) with the following property.
Suppose S is a set of size n, and the

�n
r

�
r-subsets of S have been colored with colors from

[s]. If n≥ Rr(q1, . . . , qs) then there is an i ∈ [s], and some qi-size subset T of S, such that
all r-subsets of T have color i.



3.2. RAMSEY’S THEOREM IN GENERAL 31

Our result from the last section can be recovered by taking R(l; s) = R2(

s terms︷ ︸︸ ︷
l, l, . . . , l).

Proof: The proof is by induction on all the parameters. We split it in two parts, accord-
ing to the value of s.

Case: s = 2. For ease of notation, write (q1, q2) = (p, q). We distinguish a few base
cases (check these to make sure you understand the theorem).
• If r = 1, then R1(p, q) = p+ q− 1.
• If p = r, then Rr(p, q) = q.
• If q = r, then Rr(p, q) = p.

Next, our induction hypothesis. Let r ≥ 2, p > r and q > r. We assume that we have
proven the existence of the following integers:
• Rr−1(p′, q′) for all p′, q′ ≥ r − 1;
• p0 := Rr(p− 1, q);
• q0 := Rr(p, q− 1).

Choose a set S of size |S| ≥ 1+ Rr−1(p0, q0), and a coloring χ of its r-subsets with red
and blue. Single out an element a ∈ S, and set S′ := S \ {a}. Let χ∗ be a coloring of the
(r − 1)-subsets of S′ in red and blue, such that, for each (r − 1)-subset T ⊆ S′,

χ∗(T ) = χ(T ∪ {a}).
By induction, one of the following holds:
• There exists A⊆ S′, with χ∗(T ) = red for all T ⊆ A, |T |= r−1, such that |A|= p0;
• There exists B ⊆ S′, with χ∗(T ) = blue for all T ⊆ B, |T | = r − 1, such that
|B|= q0.

By symmetry, we may assume the first holds. Recall that |A| = p0 = Rr(p − 1, q), so
again by induction, A contains either a size-q subset, all of whose r-subsets are blue
(under χ), or a size-(p − 1) subset A′, all of whose size-r-subsets are red (under χ).
In the former case we are done; in the latter it is easily checked that A′ ∪ {a} is a
monochromatic set of size p. Hence

Rr(p, q)≤ 1+ Rr−1
�
Rr(p− 1, q), Rr(p, q− 1)

�
.

Case: s > 2. Now we apply induction on s. Choose a set S of size |S| ≥ Rr(q1, . . . , qs−2,
Rr(qs−1, qs)), and let χ be a coloring of the size-r subsets of S with colors [s]. Construct
a different coloring χ ′ of the size-r subsets with colors [s− 1] such that

χ ′(T ) = χ(T ) if χ(T ) ∈ [s− 2];

χ ′(T ) = s− 1 if χ(T ) ∈ {s− 1, s}.
If there is an i ∈ [s − 2] such that S has a subset T of size qi with all size-r subsets
T ′ ⊆ T having χ ′(T ′) = i, then we are done, so assume that is not the case. Then
we know, by induction, that S has a subset T of size Rr(qs−1, qs) with all r-subsets T ′

having χ ′(T ) = s − 1. Now the r-subsets of T were originally colored s − 1 or s. By
our choice of T and induction, we find that T has either a set of size qs−1, all of whose
r-subsets have color s−1, or a set of size qs, all of whose r-subsets have color s. Hence
we have established

Rr(q1, . . . , qs)≤ Rr
�
q1, . . . , qs−2, Rr(qs−1, qs)

�
,

and our proof is complete. �
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3.3 Applications
We will show that any large enough set of points in the plane, with no three on a line,
will contain a big subset that forms a convex n-gon. First a small case:

3.3.1 LEMMA. Let P be a set of five points in the plane, with no three on a line. Then some
subset of four points of P forms a convex 4-gon.

Proof: Exercise. �

3.3.2 LEMMA. Let P be a set of n points in the plane, such that each 4-tuple forms a convex
4-gon. Then P forms a convex n-gon.

Proof: Consider the smallest polygon containing all points. There must be p, q ∈ P
such that p is on the boundary of this polygon, and q is in the interior. Draw lines from
p to all other points on the boundary. This will divide the polygon into triangles. Clearly
q must be in one of the triangles, which contradicts that all 4-tuples are convex. �

3.3.3 THEOREM. For all n there exists an integer N such that, if P is a set of at least N points
in the plane, with no three points on a line, then P contains a convex n-gon.

Proof: Take N := R4(n, 5). Let P be a set of points as in the theorem. Color the 4-
subsets of P red if they form a convex set, and blue otherwise. By Lemma 3.3.1 there
is no 5-subset for which all 4-subsets are blue. Hence Ramsey’s Theorem implies that
there must exist an n-subset all of whose 4-subsets are red! �

A second application is a “near-miss” of Fermat’s Last Theorem. We start with
Schur’s Theorem:

3.3.4 THEOREM (Schur’s Theorem). Let s be an integer. If N ≥ R2(
s terms︷ ︸︸ ︷

3, 3, . . . , 3), and the integers
[N] are colored with s colors, then there exist x , y, z ∈ [N] of the same color with

x + y = z.

Proof: Let χ : [N] → [s] be a coloring. Consider the graph KN , with vertex set [N],
and define an edge coloring χ∗ : E→ [s] as follows:

χ∗(i, j) := χ(|i− j|).

By Ramsey’s Theorem there exist i > j > k such that the subgraph indexed by these
vertices is monochromatic. That is,

χ∗(i, j) = χ∗( j, k) = χ∗(i, k)

χ(i− j) = χ( j− k) = χ(i− k).

Now choose x = i− j, y = j− k, and z = i− k to get the desired result. �

Schur applied his theorem to derive the following result:
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3.3.5 THEOREM. For every integer m ≥ 1, there exists an integer p0 such that, for all primes
p ≥ p0, the congruence

xm+ ym ≡ zm (mod p)

has a solution in positive x , y, z.

Proof: Pick a prime p > R2(
s terms︷ ︸︸ ︷

3,3, . . . , 3). Consider the multiplicative group Z∗p. This
group is cyclic, so there is an element g, the generator, such that every e ∈ Z∗p can be

written uniquely as e = ga for some a ∈ {0, . . . , p−2}. Write e = gmb+c , with 0≤ c < m.
We define a coloring χ : Z∗p→ {0, . . . , m− 1} by

χ(e) = χ(ga) = a (mod m).

By Schur’s Theorem, we can find x , y, z ∈ Z∗p such that x + y = z and χ(x) = χ(y) =
χ(z). We write x = gax = gmbx+c . Similarly for y and z. We obtain

gmbx+c + gmby+c = gmbz+c .

Dividing both sides by g c we get the desired result. �

3.4 Van der Waerden’s Theorem
A second cornerstone of Ramsey theory is Van der Waerden’s Theorem. Instead of subsets
we are now coloring integers.

3.4.1 DEFINITION. An arithmetic progression of length t is a set of integers of the form

{a, a+ l, a+ 2l, . . . , a+ (t − 1)l}.

3.4.2 THEOREM (Van der Waerden’s Theorem). For all integers t, r ≥ 1, there exists a least
integer W (t, r) such that, if the integers {1,2, . . . , W (t, r)} are colored with r colors, then
one color class has an arithmetic progression of length t.

A less combinatorial formulation is the following: If the positive integers are divided
into k classes, then one class contains arbitrarily long arithmetic progressions.

In the next section we will derive Van der Waerden’s Theorem from a very powerful
result in Ramsey Theory. Here, following Graham, Rothschild, and Spencer (1990), we
will only sketch a proof of the (rather bad) bound W (3,2) ≤ 325, using ideas that can
be extended to prove Theorem 3.4.2 directly.

First, note that W (2, r) = r + 1. We color the integers [325] red and blue. We
partition them into 65 sets of length 5:

B1 := {1, . . . , 5}, B2 = {6, . . . , 10}, . . . , B65 = {321, . . . , 325}.

Each block has a color pattern such as r br r b. We can interpret this as the blocks being
colored with 25 = 32 colors. Hence two blocks among the first 33 must have the same
color pattern. Assume, for the purposes of this illustration, that those blocks are B11
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and B26. Within B11, at least two of the first three entries have the same color. Let those
entries be j and j+ d (where d = 1 or 2, and if d = 2 then j indexes the first element).
Suppose this color is red. Now j + 2d is in B11. If it is also red then { j, j + d, j + 2d}
is our sequence; otherwise, suppose j′ is the entry corresponding to j in B26, and j′′ is
the entry corresponding to j in B41. Then one of the sequences

{ j+ 2d, j′+ 2d, j′′+ 2d}
{ j, j′+ d, j′′+ 2d}

is monochromatic. These options are illustrated in Figure 3.1.

r br r b r br r b ?

B11 B26 B41

FIGURE 3.1
Two arithmetic progressions of length 3

3.5 The Hales-Jewett Theorem
The Hales-Jewett Theorem is the workhorse of Ramsey Theory. It gets to the core of
Van der Waerden’s Theorem, getting rid of the algebraic structure of the integers and
replacing it by a purely combinatorial statement.

3.5.1 DEFINITION. Let A be a finite set of size t, and n an integer. Denote by An the set of all
n-tuples of elements of A. A subset L ⊆ An is a combinatorial line if there exist an index
set ;( I ⊆ [n], say I = {i1, . . . , ik}, and elements ai ∈ A for i 6∈ I , such that

L = {(x1, . . . , xn) ∈ An : x i1 = · · ·= x ik and x i = ai for i /∈ I}.

Think of the coordinates indexed by I as moving, and the remaining coordinates as fixed.
The moving coordinates are synchronized, and take on all possible values. At least one
coordinate is moving. We can describe such lines by introducing a new symbol, ∗, and
considering n-tuples of (A∪{∗})n. A root is an element τ ∈ (A∪{∗})n using at least one
∗. Defining I := {i : τi = ∗} yields an easy bijection between roots and combinatorial
lines.

3.5.2 EXAMPLE. Let An = [3]4, let I = {2, 4}, and let a1 = 1, a3 = 2. Then

L =
�
{1, 1,2, 1}
{1, 2,2, 2}
{1, 3,2, 3}

�
.

The root of L is 1 ∗ 2∗.
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3.5.3 THEOREM (Hales-Jewett). For all t, r ∈ N there is a least dimension HJ(t, r) such that
for all n ≥ HJ(t, r) and for all r-colorings of [t]n, there exists a monochromatic combi-
natorial line.

The main issue in understanding the proof is getting a grip on the many indices
that are floating around. We will frequently look at products of spaces, and write
An1+n2 = An1 × An2 . We will extend this notation to members of these spaces. For
instance, if A= {1,2, 3,4}, and x , y ∈ A2, say x = (1,3) and y = (4, 2), then we write
x × y ∈ A2 × A2; in particular x × y = (1, 3,4,2). One more piece of notation: if L is a
combinatorial line, then L(p) is the point on that line in which the moving coordinates
are equal to p.

Proof: The proof is by induction. It is easy to see that HJ(1, r) = 1 for all r, giving
us the base case of the induction. From now, assume that t ≥ 2 and that the (finite)
numbers HJ(t − 1, r) exist for all values of r. Fix r, and let c1, . . . , cr be a sequence of
integers, c1� c2� · · · � cr , which we will specify later. Define n := c1 + · · ·+ cr , and
fix a coloring χ of [t]n with r colors. We will interpret

[t]n = [t]c1 × [t]c2 × · · · × [t]cr .

Our starting point is to color the set [t]cr with a huge number of colors: r tn−cr colors,
to be precise. Let χ(r) be this coloring of [t]cr , defined by

χ(r)(x) = (χ(y1× x),χ(y2× x), . . . ,χ(ytn−cr × x)),

where y1, . . . , ytn−cr are the points of [t]n−cr = [t]c1 × · · · × [t]cr−1 . We assume cr
was chosen so that cr ≥ HJ(t − 1, r tn−cr ), and therefore we can find, in [t − 1]cr , a
monochromatic combinatorial line L′r (with respect to coloring χ(r)). Let Lr be the
extension of this line with the point in which the moving coordinates have value t; this
may or may not be a monochromatic line, but the key observation is that, for fixed
y ∈ [t]n−cr , the color χ(y × Lr(i)) only depends on whether or not i = t.

Now we restrict our attention to the subspace

[t]c1 × [t]c2 × · · · × [t]cr−1 .

Construct a coloring χ(r−1) of [t]cr−1 , as follows:

χ(r−1)(x) = (χ(y1× x × xr), . . . ,χ(ytn−cr−cr−1 × x × xr)),

where y1, . . . , ytn−cr−cr−1 are the points of [t]n−cr−cr−1 = [t]c1 × · · · × [t]cr−2 , and xr is
any point of Lr in which the moving coordinate is not t (as we remarked earlier, we
may as well choose xr = Lr(1)). We assume cr−1 was chosen so that cr−1 ≥ HJ(t −
1, r tn−cr−cr−1 ), so again we find a monochromatic combinatorial line L′r−1 in [t − 1]cr−1

(with respect to coloring χ(r−1)). Let Lr−1 be the extension of this line with the point
in which the moving coordinates have value t. Observe, similar to before, that for fixed
y ∈ [t]n−cr−cr−1 , the color χ(y× Lr−1(i)× Lr( j)) is independent of the choice of i, j (as
long as i, j < t), and independent of j (if i = t and j < t).



36 RAMSEY THEORY

Proceeding in this way we find ourselves with a subspace L1 × · · · × Lr . Consider
the r + 1 points

L1(1)× L2(1)× · · · × Lr(1),

L1(r)× L2(1)× · · · × Lr(1),

· · · ,
L1(r)× L2(r)× · · · × Lr(r).

Since we used only r colors, by the Pigeonhole Principle two of these must share the
same color, say with last r in positions i and j+1 (where j−1> i). Then the line L :=

{L1(r)× · · · × Li−1(r)× Li(r)× · · · × L j(r)× L j+1(1)× · · · × Lr(1),

L1(r)× · · · × Li−1(r)× Li(r − 1)× · · · × L j(r − 1)× L j+1(1)× · · · × Lr(1),

. . .

L1(r)× · · · × Li−1(r)× Li(2)× · · · × L j(2)× L j+1(1)× · · · × Lr(1)

L1(r)× · · · × Li−1(r)× Li(1)× · · · × L j(1)× L j+1(1)× · · · × Lr(1)}

is monochromatic, for the following reasons:
(i) The points L(1), . . . , L(r − 1) have the same color by our choice of Li (compare

the statement after choosing Lr−1).

(ii) The points L(1) and L(r) have the same color by our choice of i and j. �

3.5.1 Proof of Van der Waerden’s Theorem

Proof of Theorem 3.4.2: We claim that W (t, r)≤ t ·HJ(t, r). Let n := HJ(t, r), and let
N := nt. Define a function f : [t]n→ [N] by

f (x) = x1+ · · ·+ xn.

Consider a coloring χ of the integers [N] with r colors. We derive a coloring χ ′ of [t]n

by

χ ′(x) = χ(x1+ · · ·+ xn).

By Theorem 3.5.3, [t]n contains a monochromatic combinatorial line L (under coloring
χ ′). By rearranging coordinates we may assume

L = {(x , x , . . . , x︸ ︷︷ ︸
b terms

, ab+1, . . . , an) : x = 1, . . . , t}

for some fixed ab+1, . . . , an and b > 0. Now set a = b+ ab+1+ · · ·+ an. Then

f (L) := { f (y) : y ∈ L}= {a, a+ b, a+ 2b, . . . , a+ (t − 1)b},

which by our construction is monochromatic. �
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3.6 Bounds
An important question in Ramsey theory is what the exact value is of Rr(q1, . . . , qs),
W (t, r), and HJ(t, r). For the latter, for instance, the proof we gave yields truly awful
bounds, because of the recursive nature, where HJ(t, r) is bounded by recursively sub-
stituting parameters depending on HJ(t−1, r) into HJ(t−1, r) itself. For that reason,
it was a breakthrough when Shelah (1988) found a proof of Theorem 3.5.3 that was
primitive recursive, bringing the bound down to about

HJ(t, r)≤ r r.
..r tn

︸ ︷︷ ︸
n times

, where n= HJ(t − 1, r).

In this section we will restrict ourselves to Ramsey numbers for graphs, using two
colors: the numbers R(l; 2). From the proof of Theorem 3.1.1, we know R(l; 2)≤ 22l−1.
How good is this bound? The following result shows that in terms of growth rate, the
bound has the right behavior:

3.6.1 THEOREM. For all l ≥ 2, R(l; 2)≥ 2l/2.

The proof uses a tool we will encounter again in a later chapter: the probabilistic
method. Roughly, we show that a random coloring of a graph that’s too small has a
positive probability of not containing a size-l monochromatic clique:

Proof: First, observe that R(2;2) = 2 and R(3; 2) = 6. Hence we may assume l ≥ 4.
Pick an integer N < 2k/2, and consider a random coloring of the edges of KN , with
each edge independently receiving color red or blue with probability 1/2. Hence each

coloring of the full graph is equally likely, and has probability 2−(
N
2) of occurring.

Denote by AR the event that subset A of vertices induces an all-red subgraph (i.e.

all edges with both ends in A are red). If |A|= k, this probability is 2−(
l
2). Let pR be the

probability that some subset of size l induces an all-red subgraph. Then

pR = Pr



⋃
|A|=l

AR


≤

∑
A:|A|=l

Pr(AR) =
�

N

l

�
2−(

l
2).

The inequality uses the union bound, to be discussed later. Now

�
N

l

�
2−(

l
2) ≤ N l

l!
2−(

l
2) ≤ N l

2l−1
2−(

l
2) <

(2l/2)l

2l−1
2−(

l
2) = 2l2/2+1−l− 1

2
l(l−1) = 21−l/2 ≤ 1/2,

where the strict inequality uses the choice of N . Hence we have pR < 1/2. Similarly,
pB < 1/2. But then pR+pB < 1, so there is a positive probability that a random coloring
has no monochromatic l-subset. Hence such a coloring must exist! �

3.7 Density versions
All results in Ramsey theory state that some color class exhibits the desired behavior.
What can we do if we insist that the red color class having the property? At first sight,
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not much: there are colorings that don’t use red at all! But some of the most pow-
erful results in combinatorics state that, if only we use red often enough, the desired
conclusion still holds. The first theorem of this kind was the following:

3.7.1 THEOREM (Szemerédi). For all real numbers ε > 0 and integers k ≥ 3, there exists an
integer n0 such that, for any n≥ n0, and any S ⊆ [n] with |S| ≥ εn, the set S contains an
arithmetic progression of length k.

Note that we can make the fraction of points that is red as small as we want, as
long as we increase the total number of points enough. Furstenberg and Katznelson
generalized Szemerédi’s result to the following:

3.7.2 THEOREM (Density Hales-Jewett). For every integer t > 0 and for every real number
ε > 0, there exists an integer DHJ(t,ε) such that, if n ≥ DHJ(t,ε) and A ⊆ [t]n has
density∗ at least ε, then A contains a combinatorial line.

The proofs of these results were originally non-combinatorial, using ergodic theory
instead. Recently, a “polymath” project found a combinatorial proof of the Density
Hales-Jewett Theorem. Gowers and Tao managed to use Szemerédi’s Theorem to show
the existence of arbitrarily long arithmetic progressions in the set of primes.

3.8 Where to go from here?
Ramsey theory is an important branch of combinatorics, but textbooks devoted exclu-
sively to the subject are hard to find. The classical text is still
• Graham et al. (1990), Ramsey Theory.
Most books mentioned in Section 1.5 contain at least one chapter on Ramsey theory.

In particular,
• Jukna (2011), Extremal Combinatorics

contains Shelah’s proof of the Hales-Jewett Theorem.

∗This means |A| ≥ εtn.



CHAPTER4
Extremal combinatorics

E XTREMAL combinatorics deals with questions that go roughly as follows: “how
many objects of a certain type can I pack together before a certain property is
violated?” A concrete example is the following:

4.0.1 QUESTION. How many edges can a graph on n vertices have, if it has no triangles?

After some thought you might come up with the class of bipartite graphs. The
highest number of edges is achieved when the color classes are roughly equal in size,
which gives a family of graphs without triangles, and whose number of edges equal to
b1

4
n2c. So our upper bound needs to exceed this number. Mantel’s Theorem from 1907

tells us that this is tight:

4.0.2 THEOREM. If an n-vertex graph G has more than b1
4
n2c edges, then G contains a triangle.

We will prove a more general theorem in the next section.

4.1 Extremal graph theory
Another way to look at Theorem 4.0.2 is as a density version of Ramsey’s Theorem (cf.
Szemerédi’s Theorem and the Density Hales-Jewett Theorem mentioned in the previous
chapter). We ask how often we can use the color red without creating a red triangle. As
such it makes sense to generalize this result to arbitrary complete graphs. To describe
the extremal graphs (those to which no more edges can be added) we use the notion
of a k-partite graph: a graph whose vertex set is partitioned into sets V1, . . . , Vk, and
no edge has both endpoints inside a set Vi . The complete k-partite graphs are those in
which all such edges are present. If |Vi| = ni for i ∈ [k], then this complete k-partite
graph is denoted by Kn1,...,nk

. Moreover, n = n1 + · · ·+ nk, and if |ni − n j| ≤ 1 for all
i, j ∈ [k], then we denote the unique (up to vertex labeling) such graph by Tn,k.

4.1.1 EXERCISE. Show that Tn,k has b1
2
(1− 1

k
)n2c edges.

The following is a generalization of Mantel’s Theorem:

39
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4.1.2 THEOREM (Turán’s Theorem). Among all graphs with no Kk+1-subgraph, Tn,k has the
most edges.

We give two proofs, with a decidedly different flavor.

Proof 1: Let G be a graph on n vertices without Kk+1-subgraph, and with |E|maximum
under all such graphs.

4.1.2.1 CLAIM. G has no triple u, v, w of vertices with vw ∈ E yet uv, uw 6∈ E.

Proof: Suppose it does. We try to modify the graph to improve the number of edges;
we distinguish three cases.

I. If deg(u)< deg(v), then we construct a new graph, G′, as follows from G. Delete
all edges incident with u, and create new edges so that the set of neighbors of u,
denoted by N(u), satisfies N(u) = N(v). Note that u and v are not adjacent in G′, so
if G′ has a Kk+1-subgraph, then it uses at most one of u and v. But both G′ − u and
G′ − v are isomorphic to subgraphs of G, and therefore have no Kk+1. Hence G′ has
none; and the number of edges satisfies

|E(G′)|= |E(G)| − deg(u) + deg(v)> |E(G)|,

contradicting our choice of G.

II. deg(u)< deg(w) follows from (I) by symmetry.

III. If deg(u)≥ deg(v) and deg(u)≥ deg(w), then we construct a new graph, G′, as
follows from G. Delete all edges incident with v, and all edges incident with w. Then
make both v and w adjacent to all neighbors of u. Again we can see that G′ has no
Kk+1-subgraph. Moreover,

|E(G′)|= |E(G)| − deg(v)− deg(w) + 1+ 2deg(u)> |E(G)|,

where the +1 follows from double-counting the edge vw. �

Now we define an equivalence relation ∼ such that u∼ v if and only if u is not incident
to v. By the claim, this is an equivalence relation. Hence our graph G is isomorphic to
Kn1,...,nt

for some t. We leave as an exercise to prove that this is optimal precisely for
Tn,k. �

Proof 2: We will only prove the bound, not the structure. This proof turns the question
into an optimization problem. Let G be a graph with no Kk+1 subgraph. We introduce
real numbers wv for each v ∈ V (G). Our goal is:

maximize f (w) :=
∑

uv∈E(G)

wuwv

subject to wv ≥ 0 for all v ∈ V (G)∑
v∈V (G)

wv = 1.
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Let w be an optimal solution, and suppose i, j are nonadjacent vertices with wi , w j > 0.
Let si be the sum of the weights of the neighbors of i, and s j the sum of the weights of
the neighbors of j. Define w′ by

w′j = 0

w′i = wi +w j

w′k = wk for all k ∈ V \ {i, j}.

Then

f (w′) = f (w) +w jsi −w js j ≥ f (w),

so there exists a maximizer having positive weights only on the vertices of a clique, say
of size k. Let w be such an optimizer.

Now assume that there exist vertices i, j in this clique with wi > w j > 0. Pick an
ε : 0< ε < wi −w j , and define w′ by

w′j = w j + ε

w′i = wi − ε
w′k = wk for all k ∈ V \ {i, j}.

Then

f (w′) = f (w) + εwi − εw j − ε2 > f (w).

We conclude that, if f takes on nonzero values on a clique of size k, then f is maximized
when wi = 1/k if i is in the clique, and wi = 0 otherwise. This gives

f (w) =
�

k

2

�
1

k

1

k
=

1

2
(1− 1

k
).

This function is increasing in k, so it is largest when k = p− 1, which gives the upper
bound f (w)≤ 1

2
(1− 1

p−1
) for any vector w. Now we choose the vector wi =

1
n

for all i.
The function value of this one is

f (w) = |E|1
n

1

n
≤ 1

2
(1− 1

p− 1
), (4.1)

from which the result follows. �

4.2 Intersecting sets
For the next while we will be studying questions of the following form:

4.2.1 PROBLEM. LetF be a set of subsets of the finite set [n], such that [insert property here]
is satisfied. How large can F be?

To let our sentences flow more smoothly, we will speak of families of subsets from now
on. Our first property is the following:
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4.2.2 DEFINITION. Let F be a family of subsets of [n]. We say F is intersecting if A∩ B 6= ;
for all A, B ∈ F .

An example of an intersecting family would be the family of all subsets containing
element 1. There are 2n−1 of them, and the next result shows we cannot do better:

4.2.3 THEOREM. If F is an intersecting family of subsets of [n], then |F | ≤ 2n−1.

Proof: Let S := [n], and A⊆ S. At most one of A, S \ A is in F , so |F | ≤ 1
2
2n. �

Things get slightly more interesting if we insist that all sets inF have the same size,
say k. It is easy to find a family of size

�n−1
k−1

�
, and if n≥ 2k then this is best possible (if

not, we can take
�n

k

�
subsets).

4.2.4 THEOREM (Erdős-Ko-Rado). Let n, k be integers, n≥ 2k. If F is an intersecting family of
size-k subsets of [n], then |F | ≤ �n−1

k−1

�
.

3-arc

a1

a2

an

FIGURE 4.1
Illustration of the proof of the Erdős-Ko-Rado Theorem.

Proof: Let n, k be integers with n ≥ 2k. A k-arc is a set {i, i + 1, . . . , i + k}, where the
integers are taken modulo n. Imagine the elements of a k-arc as k consecutive circle
segments, connecting the points i and i + k (mod n) on a circle (see Figure 4.1). We
say arcs A and A′ intersect if they share a circle segment; meeting in just a point is not
considered an intersection.

4.2.4.1 CLAIM. A family {A1, . . . , At} of pairwise intersecting k-arcs of [n] has size t ≤ k.

Proof: Each point i is an endpoint of two arcs: one where i is the first point, and
one where it is the last. These arcs have no overlap, so at most one of them is in the
family. Moreover, given arc A1, all other arcs must have one of the interior points of
A1 as an endpoint, of which there are k− 1. �

Now consider a permutation of [n] of the form (a1, . . . , an), i.e. the permutation con-
sists of a single cycle. Label the circle segments by the ai , as in Figure 4.1. Some sets of
F may appear as k-arcs in this permutation, but by the claim that holds for at most k
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of them. Summing over all cyclic permutations, we count at most k(n− 1)! sets. How
often does a specific set appear? There are k! ways to sort set Ai , and (n− k)! ways
to sort its complement; finally, there is only a single way to combine these on a cycle.
Hence

|F |k!(n− k)!≤ k(n− 1)!

|F | ≤ k(n− 1)!
k!(n− k)!

=
�

n− 1

k− 1

�
. �

4.3 Sunflowers
The sets that attained the bounds in the previous section had a pretty nice structure.
You might imagine that it is useful to give up a few sets, if a structure like that arises as
a reward. In this section we prove a result showing that we can do this.

4.3.1 DEFINITION. A sunflower with k petals and core Y is a family F of sets, along with a set
Y , such that |F |= k, and for all A, B ∈ F with A 6= B we have A∩B = Y . Moreover, the
sets A\ Y , which we call the petals, are nonempty.

4.3.2 LEMMA (Sunflower Lemma). Let F be a family of sets, each of size s. If |F |> s!(k− 1)s

then F contains a sunflower with k petals.

Proof: We prove the result by induction on s. If s = 1 then |F | > k− 1, so F contains
at least k size-1 sets. These form a sunflower (with Y = ;).

Fix s ≥ 2, and suppose the result holds for all smaller values of s. Let {A1, . . . , At} be
a maximal collection of pairwise disjoint subsets contained in F . If t ≥ k then any k of
these form a sunflower, so assume t < k. Let B := A1∪ · · ·∪At . Then |B| ≤ s(k−1). No
set inF is disjoint from B (by maximality of A1, . . . , At), so by the pigeonhole principle,
some element x ∈ B must be in at least

|F |
|B| >

s!(k− 1)s

s(k− 1)
= (s− 1)!(k− 1)s−1

sets. Consider Fx := {A\ {x} : A∈ F , x ∈ A}. By induction we find a sunflower with k
petals in this family. Adding x to each member gives the desired sunflower of F . �

The Sunflower Lemma has found a number of applications in computer science.
As we did in the chapter on Ramsey theory, we may wonder what the best possible

bound is that guarantees a sunflower with k petals. Denote this number by f (s, k). We
have

(k− 1)s < f (s, k)≤ s!(k− 1)s + 1.

The upper bound was just proven; for the lower bound, consider the family F of SDRs
of a collection of s pairwise disjoint size-(k − 1) sets A1, . . . , As. A sunflower with k
petals in F must contain two petals using the same element x ∈ A1. But each element
is in either none, exactly one, or all of the members of the sunflower. It follows that
all petals use x . Since we are looking at SDRs, no other element of A1 is used by the
sunflower. This can be repeated for all Ai , and we can only conclude that the sunflower
has but one petal!
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4.4 Hall’s Marriage Theorem
The result in this section does not exactly fit the chapter title. However, it is a central
result that is frequently used in combinatorics, and we’ll need it in the next section.
If you’ve taken a course in graph theory, you may have seen it formulated in terms of
bipartite graphs, in close connection with Kőnig’s Theorem. Here we stick to a formu-
lation in terms of set systems.

4.4.1 DEFINITION. Let A1, . . . , An be finite sets. An n-tuple (x1, . . . , xn) is a system of distinct
representatives (SDR) if
• x i ∈ Ai for i ∈ [n];
• x i 6= x j for i, j ∈ [n] with i 6= j.

The question we wish to answer is: when does a set system A1, . . . , An have an
SDR? Clearly each Ai needs to contain an element, and A1 ∪ · · · ∪ An needs to contain
n elements. Write, for J ⊆ [n], A(J) := ∪i∈JAi . A more general necessary condition,
which is equally obvious, is Hall’s Condition:

|A(J)| ≥ |J | for all J ⊆ N . (HC)

As it turns out, this condition is not only necessary but also sufficient:

4.4.2 THEOREM (Hall’s Marriage Theorem). The finite sets A1, . . . , An have an SDR if and only
if (HC) holds.

Proof: If the sets have an SDR, then clearly (HC) holds. For the converse, suppose
(HC) holds. We prove the result by induction on n, the case n = 1 being obvious. Say
a subset J ⊆ [n] is critical if |A(J)|= |J |.

Case I. Suppose only J = ; and (possibly) J = [n] are critical. Pick any xn ∈ An, and
let A′i := Ai \ {xn} for i ∈ [n− 1]. For J ⊆ [n− 1] with J 6= ; we have

|A′(J)| ≥ |A(J)| − 1≥ |J |,
since we removed only xn from A(J), and J is not critical. Hence (HC) holds for the A′i ,
and by induction the sets A′1, . . . , A′n−1 have an SDR (x1, . . . , xn−1). Then (x1, . . . , xn) is
an SDR for the original problem.

Case II. Suppose there is a nontrivial critical set. Pick J a minimum-size, nonempty
critical set. By induction, {A j : j ∈ J} has an SDR X . Now define A′i := Ai \ A(J) for
i 6∈ J . For K ⊆ [n] \ J we find

|A′(K)|= |A(J ∪ K)| − |A(J)| ≥ |J ∪ K | − |A(J)|= |J ∪ K | − |J |= |K |,
so (HC) holds for the A′i . By induction, there is an SDR Y for those sets. The union of
X and Y then forms an SDR for the original problem. �

The name of the theorem derives from the following interpretation: men {1, . . . , n}
are trying to find a spouse; the set Ai denotes the eligible women for man i. Can all
men be married off?
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4.5 The De Bruijn-Erdős Theorem
In this section we prove the following result:

4.5.1 THEOREM (De Bruijn-Erdős). Let n > 0 be an integer, and let F be a family of subsets of
[n] such that |A∩ B| = 1 for all A, B ∈ F with A 6= B. Then |F | ≤ n. If |F | = n, say
F = {A1, . . . , An}, then one of the following holds:

(i) Up to relabeling, Ai = {i, n} (so An = {n});
(ii) Up to relabeling, Ai = {i, n} for i ∈ [n− 1], and An = [n− 1];

(iii) There exists an integer q > 0 such that n = q2 + q+ 1. Each Ai has q+ 1 elements,
and each element is in q+ 1 of the Ai .

This result is usually framed in terms of incidence geometry. We think of [n] as a set
of points, and of F as a set of lines through these points. The lines obey the classical
rules of projective geometry: every two lines intersect in exactly one point. The three
outcomes of the theorem are illustrated in Figure 4.2.

FIGURE 4.2
Illustration of the outcomes of the De Bruijn-Erdős Theorem for n= 7.

Proof: We omit the analysis for n ≤ 2, and will assume n ≥ 3. Let F = {A1, . . . , An}
be a family of subsets of [n] such that |Ai ∩ A j| = 1 for all i 6= j. We will analyze
the structure of this family, and along the way show that no further sets can be added
without violating the property. First some trivialities:
• If Ai = ; for some i then F = {;}.
• If Ai = {x} for some i and x , then x ∈ A j for all j ∈ [n]. This will be the unique

point of intersection, so at most n− 1 more sets can be added to Ai , and we have
situation (i).
• If Ai = [n] for some i, then a second set A j intersects Ai in a singleton, so has

size 1. A third set must intersect Ai and A j in a singleton, which is impossible. So
|F | ≤ 2.

Hence we may assume that 2≤ |Ai|< n for all i ∈ [n]. Define the following:

Bi := [n] \ Ai

ki := |Ai|
rx := |{ j : x ∈ A j}|.
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4.5.1.1 CLAIM. If x 6∈ Ai then rx ≤ ki .

Proof: Let A j be a set containing x . Then A j meets Ai in a single element y . If Ak
is another set containing x , then Ak meets Ai in a point distinct from y (otherwise
A j ∩ Ak ⊇ {x , y}). It follows that there can be no more sets containing x than points
on Ai . �

x

Ai

FIGURE 4.3
Illustration of Claim 1

4.5.1.2 CLAIM. The sets B1, . . . , Bn satisfy Hall’s Condition (HC).

Proof: The cases |J |= 1 and |J |= n are clear by our assumptions on the sizes of the
Ai . If |J | > 1 then, since Bi ∪ B j = [n] \ (Ai ∩ A j), we have |B(J)| ≥ n− 1. The claim
follows. �

Fix an SDR of B1, . . . , Bn, and relabel the elements so that element i is the representative
of Bi (so i 6∈ Ai). We count the pairs (i, A j) with i ∈ A j . This yields

n∑
i=1

ri =
n∑

j=1

k j .

Since ri ≤ ki for all i (by Claim 1), it follows that for all i ∈ [n] we have

ri = ki .

4.5.1.3 CLAIM. We may assume that if J is critical then J = ; or J = [n].

Proof: If a set J with |J |= 1 is critical, then there is an i such that |Ai|= n− 1. This
leads quickly to the second conclusion of the theorem. If a set J with |J | = n − 1
is critical, then n− 1 of the Ai meet a single point, which again leads to the second
conclusion. We omit the easy details. �

It follows, as in the proof of Hall’s Marriage Theorem, that we can choose the represen-
tative for one of the sets B j at will.

4.5.1.4 CLAIM. If x , y ∈ [n] then there exists an Ai ∈ F such that x , y ∈ Ai .

Proof: Pick an index j such that y ∈ A j and x ∈ B j . We may choose x as representa-
tive in the SDR. This gives rx = k j , and the conclusion follows. �
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Now every pair of elements is in a unique member of F , so no more sets can be added!
To finish our analysis of the outcomes, observe that if x 6∈ A j then rx = k j , by the

same argument as in the last claim. Suppose there exist x , y ∈ [n] with rx 6= ry . Up to
relabeling, suppose there is a z ∈ [n], z 6= y , with rx 6= rz . We have:
• Every set contains one of x and y;
• Every set contains one of x and z;
• Exactly one set contains y and z.

The first two statements follow because ru = rv = k j for all u, v 6∈ A j . Hence all but one
of the sets contain x , which again leads to the second outcome.

It follows that, for all x , y ∈ [n], we have rx = ry = q+1 for some q. Since ri = ki ,
it follows that |Ai| = q + 1. By looking at the q + 1 lines through x , each of which
contains q points besides x , we find that n = (q + 1)q + 1 = q2 + q + 1, and we are
done. �

An important problem, which has not been settled completely, is the following:

4.5.2 PROBLEM. For which values of q can the third possibility occur?

We will return to this problem later.

4.6 Sperner families
Let us look at a milder restriction on our subsets:

4.6.1 DEFINITION. A family F of sets is a Sperner family (or antichain, or clutter) if, for all
A, B ∈ F with A 6= B we have A 6⊂ B and B 6⊂ A.

This condition is easy to satisfy: take F to be the collection of all size-k subsets of
[n]. This gives a family of size

�n
k

�
, and the size of the family is maximal for k = bn/2c.

Sperner proved that we cannot, in fact, do better:

4.6.2 THEOREM (Sperner). If F is a Sperner family of subsets of [n], then |F | ≤ � n
bn/2c

�
.

Sperner’s Theorem is an easy consequence of the following result, known as the
LYM inequality, named after Lubell, Meshalkin, and Yamamoto who each independently
discovered it.

4.6.3 THEOREM (LYM inequality). If F is a Sperner family of subsets of [n], then

∑
A∈F

�
n

|A|
�−1

≤ 1.

Proof of Sperner’s Theorem using the LYM inequality: As seen above,
�n

k

�
is maximal when

k = bn/2c. Hence

1≥
∑
A∈F

�
n

|A|
�−1

≥
∑
A∈F

�
n

bn/2c
�−1

= |F |
�

n

bn/2c
�−1

. �
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The LYM inequality can be proven in various ways. This is a quick proof:

Proof of the LYM inequality: Consider chains

;= C0 ( C1 ( · · ·( Cn = [n].

There are n! such chains, and for every chain C we have |C ∩F| ≤ 1 (why?).
Pick A ∈ F with |A| = k. All chains that contain A must have A= Ck. By looking at

all orderings of the elements, it follows that there are k!(n− k)! chains containing A.
Hence the number of chains meeting F is

∑
A∈F
(|A|)!(n− |A|)!≤ n!

from which the result follows. �

An alternative approach is to derive the LYM inequality from a more general theo-
rem by Bollobás. First a special case:

4.6.4 THEOREM (Bollobás, special case). Let A1, . . . , Am be sets of size a, and B1, . . . , Bm sets of
size b, such that Ai ∩ B j = ; if and only if i = j. Then m≤ �a+b

a

�
.

This theorem, in turn, can be generalized as follows (also due to Bollobás):

4.6.5 THEOREM (Bollobás). Let A1, . . . , Am and B1, . . . , Bm be sets. Let ai := |Ai| and bi := |Bi|
for all i ∈ [m]. Suppose Ai ∩ B j = ; if and only if i = j. Then

m∑
i=1

�
ai + bi

ai

�−1

≤ 1. (4.2)

Let us work our way back:

First proof of Theorem 4.6.5: Let F := {(A1, B1), . . . , (Am, Bm)} be a collection of pairs
of sets satisfying the conditions of the theorem. Let X :=

⋃m
i=1(Ai ∪ Bi). We will prove

the result by induction on |X |, the case |X |= 1 being easily verified.
Suppose the claim holds for |X |= n−1, and assume |X |= n. For each x ∈ X , define

Fx := {(Ai , Bi \ {x}) : (Ai , Bi) ∈ F , x 6∈ Ai}.
By induction, (4.2) holds for each Fx . Sum the n left-hand sides of (4.2). We consider
the contribution of a set (Ai , Bi). For n− ai − bi elements x ∈ X we have x 6∈ Ai ∪ Bi , so

the contribution is
�ai+bi

ai

�−1
. For bi elements x ∈ X we have x ∈ Bi (and hence x 6∈ Ai).

The contribution in this case is
�ai+bi−1

ai

�
. This gives

m∑
i=1

�
(n− ai − bi)

�
ai + bi

ai

�−1

+ bi

�
ai + bi − 1

ai

�−1�
≤ n.

Note that
�

ai + bi − 1

ai

�
=

bi

ai + bi

�
ai + bi

ai

�
,
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from which we find

m∑
i=1

n
�

ai + bi

ai

�−1

≤ n,

and the result follows. �

We will see another beautiful proof of Bollobás’ Theorem using the probabilistic
method in Section 6.4.

Proof of Theorem 4.6.4 using Bollobás’ Theorem: Just substitute ai = a and bi = b for
all i. �

Proof of the LYM inequality using Bollobás Theorem: Let F = {A1, . . . , Am} and define
Bi := [n] \ Ai . Since now bi = n− ai , we find

m∑
i=1

�
n

ai

�−1

=
m∑

i=1

�
ai + bi

ai

�−1

≤ 1,

where the inequality is Bollobás’ Theorem. �

4.7 Dilworth’s Theorem
The first proof of the LYM inequality used the existence of a relation between Sperner
families and chains of subsets. This relation is more explicit in a result by Dilworth.
Dilworth’s theorem holds for more general structures than subsets: we can prove it for
arbitrary partial orders.

4.7.1 DEFINITION. A partially ordered set (or poset) is a pair (P,≤) such that ≤ is a subset
of P × P (we denote the fact that (x , y) is in this subset by x ≤ y), satisfying for all
x , y, z ∈ P:
Reflexivity: x ≤ x;
Antisymmetry: If x ≤ y and y ≤ x then x = y;
Transitivity: If x ≤ y and y ≤ z then x ≤ z.

A key example of a poset is when P is a collection of sets, and ≤ is set inclusion:
X ≤ Y iff X ⊆ Y .

4.7.2 DEFINITION. A chain in a poset is an ordered tuple (x1, . . . , xk) of distinct elements such
that x1 ≤ x2 ≤ · · · ≤ xk. An antichain is a subset F such that, for all distinct x , y ∈ F
we have neither x ≤ y nor y ≤ x .

We study the problems of partitioning a poset into disjoint chains, or into disjoint
antichains. The following is easy to see, since a chain and an antichain intersect in at
most one element:

4.7.3 LEMMA. Let (P,≤) be a poset.
(i) If P has a chain of size r, then P cannot be partitioned into fewer than r antichains;
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(ii) If P has an antichain of size r, then P cannot be partitioned into fewer than r chains.

We will prove that the bound of r is tight in both cases. First, a partition into chains:

4.7.4 THEOREM. Suppose the longest chain in a poset (P,≤) has size r. Then we can partition
P into r antichains.

Proof: For x ∈ P, define the height of x as the longest chain ending in x . Let Ai be
the set of elements of height i, for i ∈ [r]. Then clearly P = A1 ∪ · · · ∪ Ar . We show
that each Ai is an antichain. Consider x , y ∈ Ai and suppose x ≤ y . By definition there
exists a chain

x1 ≤ x2 ≤ · · · ≤ x i = x .

We can add y to this chain obtaining a chain of length i + 1 ending in y , a contradic-
tion. �

The converse is a little more difficult to prove.

4.7.5 THEOREM (Dilworth). Suppose the longest antichain in a poset (P,≤) has size r. Then P
can be partitioned into r chains.

Proof: The proof is by induction on |P|, the case |P| = 0 being trivial. Let C be a
maximal chain in P. If P \C has only antichains up to size r−1 then we find a partition
into r − 1 chains, to which C can be added for a partition of P. Hence we may assume
P \ C has an antichain a1, . . . , ar . Clearly this is also a maximal antichain of P. We
define two subsets of P:

S− := {x ∈ P : x ≤ ai for some i},
S+ := {x ∈ P : ai ≤ x for some i}.

Note:
• Each item of P is in one of S−, S+; otherwise a larger antichain would exist.
• S− ∩ S+ = {a1, . . . , ar}.
• The start of C is not in S+.
• The end of C is not in S−.
• The elements a1, . . . , ar are maximal in S−.
• The elements a1, . . . , ar are minimal in S+.

For the fifth item, suppose ai ≤ y for some y ∈ S−. Then there exists an index j such
that ai ≤ y ≤ a j , so ai = y = a j .

Now, since S− and S+ are strict subsets of P, each with an antichain of size r, these
sets can be partitioned, by induction, into r chains. The chains of S− end in the ai , and
the chains in S+ start with the ai . Joining them up gives the desired partition of P. �

4.7.6 EXERCISE. Prove Hall’s Marriage Theorem using Dilworth’s Theorem.

4.8 Where to go from here?
An excellent book on extremal combinatorics, which was mentioned before, is
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• Jukna (2011), Extremal Combinatorics.
It contains much more material than these notes, and references to even more material.
The following books are devoted exclusively to extremal set theory:
• Anderson (1987), Combinatorial Set Theory is a very readable textbook.
• Engel (1997), Sperner Theory is an advanced text dealing with Sperner systems.

In the next chapter we will use a powerful method to prove more results from extremal
combinatorics.





CHAPTER5
Linear algebra in combinatorics

L INEAR algebra can be a powerful tool in combinatorics. In this chapter we will see
a number of examples of this phenomenon. In the first half we will focus again
on extremal results in set theory. In the second half, starting with Section 5.5 we

will shift our focus to some combinatorial uses for determinants.

5.1 The clubs of Oddtown
In an effort to cut costs, the town council of Oddtown tries to limit the number of clubs
the citizens can form. They hire two consulting firms, who come up with the following
rules for clubs. Both firms agree on the first two rules, but have a different version of
the third.

(i) No two clubs can have the same set of members;
(ii) Every two distinct clubs must have an even number of common members;

(iii) a) Each club has an even number of members;
b) Each club has an odd number of members.

If clubs have even size, a collection of clubs of size 2bn/2c is easily constructed:
divide the citizens into pairs, and let each club be a union of pairs. If clubs have odd
size, it is harder to come up with a large construction, and you’ll struggle to do better
than {1}, . . . , {n}. There is a reason for the struggle:

5.1.1 THEOREM (Oddtown). LetF be a family of subsets of [n] such that, for all A, B ∈ F with
A 6= B, we have |A∩ B| is even and |A| is odd. Then |F | ≤ n.

Proof: Let F = {A1, . . . , Am}. For each Ai define a vector ai ∈ Zn
2 by

(ai) j =

(
1 if j ∈ Ai

0 otherwise.

Consider the inner product 〈ai , a j〉.

〈ai , a j〉=
∑

x∈[n]
(ai)x(a j)x =

∑
x∈Ai∩A j

1 (mod 2) =

(
0 i 6= j

1 i = j.

53
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If we collect the vectors ai as the rows of an m× n matrix A, then

AAT = Im,

where Im denotes the m × m identity matrix. Since each column of AAT is a linear
combination of the columns of A, we have

m= rk(AAT )≤ rk(A)≤ n,

and the result follows. �

Effectively, what we have done is shown that the vectors ai are linearly independent
in Zn

2. Since dim(Zn
2 ) = n, there are at most n of the ai .

To prove that our construction in the case of even-size clubs is optimal, we use the
following definition and lemma from linear algebra:

5.1.2 DEFINITION. Let W be a vector space with inner product 〈·, ·〉. Let V be a linear sub-
space of W . The orthogonal complement of V is

V⊥ := {w ∈W : 〈v, w〉= 0 for all v ∈ V}.

It is easily seen that V⊥ is a vector space, and that (V⊥)⊥ = V . Moreover, we have the
following:

5.1.3 LEMMA. Let V be a subspace of an n-dimensional vector space W. Then

dim(V ) + dim(V⊥) = n.

If V happened to be the rowspace of a matrix A, then this is a reformulation of the
rank-nullity theorem.

5.1.4 THEOREM. Let F be a family of subsets of [n] such that, for all A, B ∈ F with A 6= B, we
have |A∩ B| is even and |A| is even. Then |F | ≤ 2bn/2c.

Proof: Construct vectors ai as before. Note that now 〈ai , a j〉 = 0 for all i, j ∈ [m].
Moreover, 〈ai + a j , ak〉 = 0, so we conclude that the vectors ai are contained in the
linear subspace

V := {v ∈ Zn
2 : 〈v, ai〉= 0 for all i ∈ [m]}.

The key observation∗ here is that V ⊆ V⊥. Now we use the dimension formula:

n= dim(V ) + dim(V⊥)≥ dim(V ) + dim(V ),

so dim(V ) ≤ n/2, and hence V has at most 2bn/2c vectors. The ai are among these, so
the result follows. �

∗This may look weird, and would never happen in vector spaces over Q,R, or C unless V = {0}. But
finite fields are different: a nonzero vector can be orthogonal to itself, for starters.
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5.2 Fisher’s Inequality
We prove the following generalization of the De Bruijn-Erdős Theorem (though we
make no attempt to classify the extremal cases):

5.2.1 THEOREM (Fisher’s Inequality). Let k be an integer, and let F be a family of subsets of
[n] such that |A∩ B|= k for all A, B ∈ F with A 6= B. Then |F | ≤ n.

Proof: Suppose F = {A1, . . . , Am}. Associate to each Ai a vector ai ∈ Rn as follows
(note that we use a different field from before!):

(ai) j =

(
1 if j ∈ Ai

0 otherwise.

Now

〈ai , a j〉=
(
|Ai| if i = j

k if i 6= j.

We will show that the ai are linearly independent. Suppose not. Then there exist
α1, . . . ,αm, not all zero, such that

m∑
i=1

αiai = 0.

Note that at least two of the αi must be nonzero. Now

0=

*
m∑

i=1

αiai ,
m∑

j=1

α ja j

+
=

m∑
i=1

α2
i 〈ai , ai〉+

∑
i 6= j

αiα j〈ai , a j〉

=
m∑

i=1

α2
i |Ai|+

∑
i 6= j

kαiα j =
m∑

i=1

α2
i (|Ai| − k) + k

 
m∑

i=1

αi

!2

.

Note that |Ai| ≥ k for all i, and that we can have |Ai| = k at most once. Since αi 6= 0
for at least two of the coefficients, the right-hand side of this equation is strictly greater
than zero, a contradiction.

Hence the ai are linearly independent. They are vectors in Rn, so there are at most
n of them. �

5.3 The vector space of polynomials
We obtained our results so far by associating a vector to each member of the structure,
and showing that these vectors are linearly independent, thus bounding the size of the
structure. In this section we will repeat this trick, but with a twist: our vectors are now
functions.

Let Ω be any set, and F a field. We denote the space of all functions f : Ω → F
by FΩ. It is easy to verify that this is indeed a vector space. Our key lemma is the
following:
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5.3.1 LEMMA (Independence Criterion). Let f1, . . . , fm be functions in FΩ, and let v1, . . . , vm ∈
Ω be such that
• fi(vi) 6= 0 for all i;
• fi(v j) = 0 for all j < i.

Then f1, . . . , fm are linearly independent.

Proof: Suppose not. Then there exist λ1, . . . ,λm ∈ F, not all zero, such that

g := λ1 f1+ · · ·+λm fm = 0.

Let j ∈ [m] be the least index such that λ j 6= 0. Write

0= g(v j) =
∑
i≤ j

λi fi(v j) +
∑
j<i

λi fi(v j) = λ j f j(v j) 6= 0,

a contradiction. �

As a first application, consider the following problem:

5.3.2 PROBLEM. Let c, d ∈ R, and let A⊂ Rn be a set of vectors such that ‖x − y‖ ∈ {c, d} for
all x , y ∈ A. How large can A be?

We call A a two-distance set.
If c = d, that is, if A is a one-distance set, then it is not hard to show that |A| ≤ n+1.

For two distances it is not very hard to do better:

5.3.3 EXERCISE. Show that there exists a two-distance set of size
�n

2

�
.

Interestingly, that number is nearly tight!

5.3.4 THEOREM. Every two-distance set in Rn has at most 1
2
(n+ 1)(n+ 4) points.

Proof: Suppose A = {a1, . . . , am} is a two-distance set with distances c, d. Define, for
i ∈ [m],

fi(x) :=
�
‖x − ai‖2− c2

��
‖x − ai‖2− d2

�
.

Then fi(ai) = c2d2 6= 0, and fi(a j) = 0 for i 6= j, so by Lemma 5.3.1 the fi are linearly
independent. To bound m, then, it suffices to find a low-dimensional space containing
all of the fi . If we look at the expansion, we see that each fi is a linear combination of

�∑n
i=1 x2

i

�2
,
�∑n

i=1 x2
i

�
x j , x i x j , , x i , , 1.

Hence f1, . . . , fm ⊆ V for some vector space V of dimension at most 1+n+ 1
2
n(n+1)+

n+ 1= 1
2
(n+ 1)(n+ 4), and therefore m≤ 1

2
(n+ 1)(n+ 4). �

Note that a better bound, due to Blokhuis (1984), is 1
2
(n+ 1)(n+ 2). The key is

to see that the functions x1, x2, . . . , xn, 1 can be added to f1, . . . , fm, and the result still
forms a linearly independent set!

Our second application is a generalization of the De Bruijn-Erdős Theorem in a
slightly different direction:
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5.3.5 DEFINITION. Let L ⊂ {0,1, . . . , n}. A family F of subsets of [n] is L-intersecting if
|A∩ B| ∈ L for all A, B ∈ F with A 6= B.

We wish to bound the size of an L-intersecting family. If L = {0,1, . . . , l − 1} then a
simple idea is to take F = {X ∈ [n] : |X | ≤ l}. As it turns out, no family can beat this
construction, regardless of the choice of L:

5.3.6 THEOREM. Let L ⊂ {0,1, . . . , n}, and let F be an L-intersecting family of subsets of [n].
Then

|F | ≤
|L|∑

k=0

�
n

k

�
.

Proof: Let F = {A1, . . . , Am}, and suppose the sets are sorted so that |Ai| ≤ |A j| if i < j.
Let ai := (ai1, . . . , ain) be the incidence vector:

ai j =

(
1 if j ∈ Ai

0 otherwise.

For i ∈ [m], define fi : Rn→ R by

fi(x) :=
∏

l∈L:l<|Ai |

�〈ai , x〉 − l
�

.

Note that

fi(ai) =
∏

l∈L:l<|Ai |

�|Ai| − l
�
> 0,

fi(a j) = 0 for j < i,

since 〈ai , a j〉= |Ai ∩ A j|< |Ai|.
It follows that the fi are linearly independent, and again we must find a small-

dimensional subspace containing them all. The degree of each fi is at most |L|, but a
trick gets us better results. Note that all deductions above remain true if we interpret
the fi as functions {0,1}n → R. This allows us to replace each term xk

i by x i itself! So
each term in the expansion of fi will be a monomial in which each x j occurs at most
once. There are precisely

|L|∑
k=0

�
n

k

�

such monomials. �

Finally, we sketch a “modular version” of the theorem:

5.3.7 THEOREM. Let p be a prime, let L ⊂ Zp, and suppose F is such that
• |A| 6∈ L (mod p) for all A∈ F ;
• |A∩ B| ∈ L (mod p) for all A, B ∈ F with A 6= B.
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Then

|F | ≤
|L|∑

k=0

�
n

k

�
.

Sketch of proof: Define the polynomials fi : Zn
p→ Zp by

fi(x) :=
∏
l∈L

�〈ai , x〉 − l
�

.

Follow the proof of the previous theorem. �

5.4 Some applications
We study some applications of the linear algebra method in general, starting with a few
applications of the various theorems proven so far.

5.4.1 Lines in R2

Our first application deals with classical geometry in the plane. For any two points in
the plane there is a unique line meeting those points.

5.4.1 THEOREM. Let P be a set of n points in R2, such that not all points lie on a single line.
Then these points determine at least n lines.

Proof: Let L be the set of lines determined by the points P . For each x ∈ P , let
Ax := {l ∈ L : x ∈ l}. Note that |Ax | ≥ 2 (otherwise all points would lie on a single
line), Ax 6= Ay if x 6= y (since two lines determine a point), and |Ax ∩ Ay | = 1 (since
two points define a unique line). It follows from Theorem 5.2.1, applied to the sets Ax ,
that |P | ≤ |L |. �

Note that, since we used only the most elementary facts about lines, the proof holds
for any projective or affine plane. As an aside we cannot resist mentioning a classical
theorem that does require the plane to be Euclidean:

5.4.2 THEOREM (Sylvester-Gallai). Let P be a set of n points in R2, not all on a line. Then
some line contains exactly two of the points.

Proof: Let L be the set of lines determined by P . Consider the set of pairs (x , l)
with x ∈ P , l ∈ L , and x 6∈ l. Pick a pair (x0, l0) minimizing the distance d(x , l)
between the point and the line. Let q be the point on l0 closest to x0. See Figure 5.1.
If l0 contains three points, at least two of them will not be separated by q. Say these
are y, z, labeled so d(y, q) < d(z, q). Now let l1 be the line through x0 and z. Then
d(y, l1)< d(x0, l0), a contradiction. So l0 contains only two points. �

5.4.2 Explicit Ramsey graphs

We consider Corollary 3.1.2, which states that every sufficiently large graph contains
either a big clique or a big stable set. But how large, precisely, is “sufficiently large”?
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x0l0

y

z

FIGURE 5.1
The proof of the Sylvester-Gallai Theorem

To answer that, we need to construct the largest possible graphs without a big clique
and without a big stable set. Let’s call such graphs Ramsey graphs. We have seen
(in Theorem 3.6.1) that R(k; 2) ≥ 2k/2. However, the proof does not tell us how to
construct graphs attaining that bound. Since such graphs can be useful, it is worthwhile
looking at constructions.

5.4.3 THEOREM. Let k be an integer, and let G be a graph having as vertex set all size-3 subsets
of [k]. Two vertices A and B are adjacent if and only if |A∩ B| = 1. Then G has neither a
clique nor an stable set of size more than k.

Since G has roughly k3 edges, it follows that R(k; 2) = Ω(k3).

Proof: Let Q be a clique. By Theorem 5.2.1 we have |Q| ≤ k. Let Q be a stable set. By
Theorem 5.1.1 we have |Q| ≤ k. �

We can, in fact, show a stronger lower bound using similar ideas:

5.4.4 THEOREM. For every prime p, there exists a graph G on
� p3

p2−1

�
vertices such that each

clique and each independent set has size at most

p−1∑
i=0

�
p3

i

�
.

This graph has about pp2
vertices, and the largest clique and stable set have size

about pp, so R(k; 2) = Ω(kp) = Ω(klog k/ log log k).

Proof: Let G be a graph having as vertex set all size-(p2 − 1) subsets of [p3]. Two
vertices A and B are adjacent if and only if |A∩ B| 6= p− 1 (mod p).

If A1, . . . , Ak is a clique, then choose L = {0, 1, . . . , p − 2}. Theorem 5.3.7 then

implies k ≤∑p−1
i=0

�p3

i

�
.

If A1, . . . , Ak is a stable set, then choose L = {p−1,2p−1, . . . , p2− p−1}. Now we

apply Theorem 5.3.6 to conclude again that k ≤∑p−1
i=0

�p3

i

�
. �
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5.4.3 Borsuk’s Conjecture refuted

In 1932, Borsuk conjectured the following:

5.4.5 CONJECTURE. Every set S ⊂ Rd of bounded diameter sup{‖x − y‖ : x , y ∈ S} can be split
into d + 1 parts, each of which has smaller diameter.

It is easy to prove that d parts don’t suffice (do this!), and the conjecture was proven in
some special cases: d = 2,3, any d when S is smooth, and so on.

It came as a shock, then, that Kahn and Kalai disproved the conjecture in 1993!

5.4.6 THEOREM. For sufficiently large d there exists a set S ⊂ Rd of bounded diameter, such that
any partition of S into fewer than 1.2

p
d parts contains some part of the same diameter as

S.

We start with a lemma:

5.4.7 LEMMA. For p prime, there are 1
2

�4p
2p

�
vectors F ⊆ {−1,1}4p such that every subset of

2
� 4p

p−1

�
of them contains an orthogonal pair.

Proof: Let F be the size-2p subsets of [4p] containing 1. For each A ∈ F define a
vector a by ai = 1 if i ∈ A and ai = −1 otherwise. Let F be this set of vectors, and pick
a, b ∈ F . Now

〈a, b〉=
∑

ai bi = 0 if and only if |A∩ B|= p.

This is because positive and negative terms need to cancel, so |A4B| = 2p, which
implies |A∩ B| = p. Since 1 ≤ |A∩ B| ≤ 2p− 1, we have that 〈a, b〉 = 0 if and only if
|A∩ B|= 0 (mod p).

Now consider a subset G ⊆ F without orthogonal pair. Then the corresponding
subset family G satisfies |A| = 0 (mod p) for all A ∈ G , and |A∩ B| ∈ {1, 2, . . . , p − 1}
(mod p). It follows from Theorem 5.3.7 that

|G | ≤
p−1∑
k=0

�
4p

k

�
< 2
�

4p

p− 1

�
. �

Proof of Theorem 5.4.6: We can find hard-to-avoid orthogonal pairs using the previous
lemma; our next task is to turn these into maximum-distance pairs of vectors in a set
S. We use tensors for this purpose. Given a set F ⊆ R4p as defined by the lemma, we
define

S := {v⊗ v : v ∈ F} ⊆ Rn2
.

Here an element w = v ⊗ v ∈ S is defined by wi j = vi · v j . We have the following
properties (which are not hard to verify) for w, w′ ∈ S with w = v⊗ v and w′ = v′⊗ v′:

(i) w ∈ {−1,1}n2
;

(ii) ‖w‖=
p

n2 = n;
(iii) 〈w, w′〉= 〈v, v′〉2 ≥ 0;
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(iv) w, w′ are orthogonal if and only if v, v′ are orthogonal;
(v) ‖w−w′‖2 = ‖w‖2+‖w′‖2−2〈w, w′〉= 2n2−2〈v, v′〉2 ≤ 2n2, which is maximized

when w, w′ are orthogonal.
If we wish to partition S into subsets of strictly smaller diameter, each of those subsets
has to have size less than 2

� 4p
p−1

�
by our lemma. Hence the number of subsets needs to

be at least

|S|
2
� 4p

p−1

� =
1
2

�4p
2p

�

2
� 4p

p−1

� = (3p+ 1)(3p)(3p− 1) · · · (2p+ 2)(2p+ 1)
4(2p)(2p− 1) · · · (p+ 1)(p)

≥
�

3

2

�p−1

.

Since the dimension d = n2 = (4p)2, it follows that the number of parts must be at least
(3/2)

p
d/4−1. The actual bound stated in the theorem requires a slightly more careful

analysis. �

5.5 Gessel-Viennot and Cauchy-Binet
Let M be an n× n matrix with entries mi j . The determinant of M is

det(M) =
∑
σ∈Sn

sgn(σ)m1σ(1)m2σ(2) · · ·mnσ(n),

where Sn is the set of all permutations of [n], and sgn(σ) is the sign: +1 for even
permutations and −1 for odd permutations, where even and odd refer to the number of
two-cycles when we write σ as a product of (non-disjoint) two-cycles. To refresh your
memory: if σ = {5,2, 1,3, 4} (i.e. 1 gets mapped to 5, 2 to 2, and so on), then, for
instance,

σ = (1, 5)(3,5)(4,5),

so sgn(σ) = −1 (and this is independent of the particular 2-cycles, or transpositions,
we use).




t1 ··· tn

s1

... M
sn




s1

t1

sn

tn

si

t j

mi j

FIGURE 5.2
From a matrix to a directed graph

We will go through some lengths to reformulate this in terms of directed graphs.
Indeed: consider a directed graph D = (V, A) with V = {s1, . . . sn, t1, . . . , tn} and A =
{(si , t j) : i, j ∈ [n]}. We assign to each directed edge (si , t j) a number, which we call
its weight. Let the weight of (si , t j) in D be equal to mi j . A path system is a collection
of directed paths Pσ := {s1 → tσ(1), . . . , sn → tσ(n)}. Note that each path consists of a
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single directed edge. The weight of a path system is the product of the weights of the
paths, and is denoted by w(Pσ). Now

det(M) =
∑
σ∈Sn

sgn(σ)w(Pσ).

The observation of Gessel and Viennot was that we can do essentially the same for
other directed graphs! We generalize our definitions. In what follows, D = (V, A) will be
an acyclic directed graph, and w : E→ R a function assigning a weight to each directed
edge. Denote by P : s→ t the fact that P is a directed path starting in s and ending in
t. The weight of a path is

w(P) :=
∏
e∈P

w(e),

so if s = t then w(P) = 1. Now let S = {s1, . . . sn} and T = {t1, . . . , tn} be sets of vertices
of D.

5.5.1 DEFINITION. A path system P is a collection {P1, . . . , Pn} of directed paths in D such
that, for some permutation σ of [n], we have Pi : si → tσ(i) for all i ∈ [n]. The sign of
a path system is sgn(P ) = sgn(σ).

The weight of a path system is

w(P ) :=
n∏

i=1

w(Pi).

Define a matrix M = (mi j) by

mi j :=
∑

P:si→t j

w(P),

i.e. the sum of the weights of all directed si → t j paths. Then we have

5.5.2 LEMMA (Gessel-Viennot).

det(M) =
∑
P

sgn(P )w(P ),

where the sum ranges over all path systems where the paths are pairwise vertex-disjoint.

The fact that the sum is only over vertex-disjoint paths is what makes the lemma so
useful, as we will see in the two applications we’ll discuss.

Proof: Plugging the definition of mi j into the determinant formula, we get

det(M) =
∑
σ∈Sn

sgn(σ)




∑
P1:s1→tσ(1)

w(P1)






∑
P2:s2→tσ(2)

w(P2)


 · · ·




∑
Pn:sn→tσ(n)

w(Pn)




=
∑
P

sgn(P )w(P ),
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where the sum in the second line is over all path systems, including the non-disjoint
ones! Let N be the set of all non-vertex-disjoint path systems. The result follows if we
can show ∑

P ∈N

sgn(P )w(P ) = 0.

To that end we will show that there is an involution π : N → N without fixed points,
such that for P and π(P ) we have

w(P ) = w(π(P )) and sgn(P ) =− sgn(π(P )).
We construct π as follows. Pick any P ∈ N . Let i0 be the least index i such that path Pi
meets another path Pj . Let v be the first vertex on Pi0 shared by another path, and let
j0 be the least index larger than i0 such that Pj0 meets v. Now we define

π(P ) = (P ′1, . . . , P ′n)

by
• P ′k = Pk for k 6= i0, j0;
• P ′i0 is the path si0 → tσ( j0) following Pi0 until v and Pj0 from v;
• P ′j0 is the path s j0 → tσ(i0) following Pj0 until v and Pi0 from v.

Since v exists and is not one of the t i , we have that π(P ) 6=P . Moreover, sgn(π(P )) =
− sgn(P ) (since the new permutation was obtained from the old by one extra transpo-
sition), and π(π(P )) = P . Finally, the two path systems have the same set of edges,
so w(π(P )) = w(P ). The result follows. �

5.5.1 Lattice paths

As a first application, consider the following problem, which first led Gessel and Viennot
to their lemma:

5.5.3 PROBLEM. Given positive integers a1 < a2 < · · ·< an and b1 < b2 < · · ·< bn, what is

det




�a1
b1

� · · · �a1
bn

�
...

...�an
b1

� · · · �an
bn

�


?

We place points s1, . . . , sn and t1, . . . , tn on the 2-dimensional grid, with si at position
(0,−ai) and t j at (b j ,−b j). We direct the lattice edges north and east. The number of
si → t j paths is

�
b j + (ai − b j)

b j

�
=
�

ai

b j

�
,

precisely the entry (i, j) of our matrix. Note that the graph is planar, so vertex-disjoint
paths cannot cross. Hence the only option for a vertex-disjoint path system is to have
the identity permutation. From our lemma we now have

det

��
ai

b j

��
= number of vertex-disjoint path systems {s1→ t1, . . . , sn→ tn}.

It follows in particular that this determinant is nonnegative, and zero precisely when
ai < bi for some i.
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5.5.2 The Cauchy-Binet Formula

A second result, which has a number of different proofs and many applications, is the
following.

5.5.4 THEOREM (Cauchy-Binet). Let A be an r×n matrix, and B an n× r matrix, where n≥ r.
Then

det(AB) =
∑

X⊆[n]:|X |=r

(det(AX ))(det(BX )),

where AX is the r × r submatrix of A with columns indexed by X ,and BX is the r × r
submatrix of B with rows indexed by X .

s1

t1

sr

tn

si

t j

ai j

u1 uruk

b jk

FIGURE 5.3
Proof of the Cauchy-Binet formula, detail

Proof: Index the rows of A by a set S and the columns by a set T . Index the rows of
B by T again, and the columns of B by a set U . Construct, for each matrix, a bipartite
graph as at the start of Section 5.5, and identify the vertex set T of one with the vertex
set T of the other. See Figure 5.3.

The path matrix of this directed graph has entries

mi j =
n∑

k=1

ai j b jk

so M = AB. By the Gessel-Viennot Lemma,

det(AB) = det(M) =
∑
P

sgn(P )w(P ).

Now it is just a matter of observing that each path system S→ U breaks up into a path
system S→ X and a path system X → U , where X ⊆ T has size r. For fixed X , we need
the additional observation that sgn(σ ◦ τ) = sgn(σ) sgn(τ). Summing over all these
pairs yields the result. �

5.6 Kirchhoff’s Matrix-Tree Theorem
We will use the theory from the previous section, in particular the Cauchy-Binet for-
mula, to solve a counting problem:
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5.6.1 PROBLEM. Given a connected graph G, determine the number of spanning trees of G.

Since we don’t know in advance what G is, the answer should be an algorithm. A
slow algorithm would be the following recursion:
• Given a forest F , find an edge e not spanned by F ;
• Count:

– The number of trees that extend F ∪ {e};
– The number of trees that extend F and do not use e.

• Return the sum of the two.
The desired number is then the count obtained by starting with an edgeless forest F .

The algorithm just described takes, in the worst case, about 2|E| steps, which quickly
becomes impractical. While it is still useful for theoretical purposes (see Section 11.2),
we would like a more efficient algorithm. And the following result, due to Kirchhoff (of
circuit law fame), gives just that:

5.6.2 THEOREM (Kirchhoff). Let G = (V, E, ι) be a connected multigraph without loops, having
V = [n]. Let F = (ai j) be the adjacency matrix of G, given by

ai j = the number of edges from i to j.

Let D = (di j) be the diagonal matrix such that dii = deg(i).
Let Q be any (n− 1)× (n− 1) principal submatrix of D− F. Then det(Q) equals the

number of spanning trees of G.

Note that building Q from a given graph takes (depending on the data structure)
roughly O(n2) steps, and computing the determinant roughly O(n3) steps. This is a
huge improvement over our first algorithm! We need a few lemmas:

5.6.3 LEMMA. D−F = AAT , where A is the signed incidence matrix of G. That is, A is an [n]×E
matrix (i.e. rows are labeled by the set [n] = V and columns by the set E) with entries

ave =




−1 if e = uv, and v < u

1 if e = uv, and v > u

0 otherwise.

Proof: Consider a diagonal entry of R := AAT . Then

Rvv =
∑
e∈E

a2
ve =

∑
e incident with v

1= deg(v).

And an off-diagonal entry:

Ruv =
∑
e∈E

aueave =
∑

e∈E:e=uv

(−1) · 1. �

Note that the result remains valid if we scale some columns of A by −1. Hence we
may reorder the vertices if we feel so inclined.

5.6.4 LEMMA. A subset X ⊆ E of columns of A is linearly independent if and only if X contains
no cycle (in G).
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Proof: Consider a submatrix corresponding to a cycle. After reordering the vertices
and edges, and scaling some of the columns, this matrix looks like




−1 1
1 −1

1 −1
1 −1

1 −1
0 · · · 0
...

...
0 · · · 0




,

where omitted entries are 0. Since the columns add up to the all-zero vector, this set of
columns is linearly dependent.

For the converse, we argue by induction on |X |, the case |X | = 0 being trivial.
Otherwise, since the subgraph corresponding to X is a forest, there must be some vertex
v of degree 1. The submatrix then looks like




e

v 1 0 · · · 0

−1
H




,

and it is singular if and only if the submatrix H corresponding to X \ {e} is singular. �

5.6.5 LEMMA. If H is a square submatrix of A then det(H) ∈ {−1,0, 1}.

Proof: Suppose not. Let H be a square submatrix with different determinant, and
choose H as small as possible. Then H has no all-zero rows. If a row has exactly
one nonzero entry, then that entry is 1 or −1, and by developing with respect to this
row we find a smaller violating submatrix, a contradiction. Hence each row (and by
symmetry each column) has at least two nonzero entries. But each column has at most
two nonzero entries, so this number must be exact. By counting the total number of
nonzero entries, also each row must have exactly two. But then the corresponding
subgraph is a union of cycles, and hence det(H) = 0, by the previous lemma. �

Proof of the Matrix-Tree Theorem: Let A′ be the matrix obtained from A by removing the
row corresponding to vertex i. Note that since the sum of all rows of A is zero, we can
recover this row uniquely. We know from Lemma 5.6.4 that a subset X ⊆ E : |X |= n−1
indexes an independent subset of columns if and only if the corresponding subgraph is
a spanning tree. By the Cauchy-Binet formula we find

det(A′(A′)T ) =
∑

X⊆E:|X |=n−1

det(A′X )det((A′X )
T ) =

∑
X⊆E:|X |=n−1

det(A′X )
2

=
∑

X⊆E:|X |=n−1
X spanning tree

1,
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where the last equality uses that det(A′X ) ∈ {−1,0, 1}, and is nonzero if and only if X is
a spanning tree. The result follows by noting that Q = A′(A′)T . �

We conclude this section with the advertised (third) proof of Cayley’s theorem.

Third proof of Theorem 2.2.1: Any tree on n vertices is a spanning tree of the com-
plete graph Kn, so we can apply the Matrix-Tree Theorem. We get that the number of
spanning trees of Kn is equal with 1

n
λ1 . . .λn−1, where λ1, . . . ,λn−1 are the non-zero

eigenvalues of the Laplacian matrix

L =




n− 1 −1 · · · −1

−1
... . . .

...
...

. . . . . . −1
−1 · · · −1 n− 1



= nI − J ,

where J is the n× n matrix of ones.
Note that J has the ones vector as one of its eigenvectors. The remaining n − 1

eigenvectors are of the form 


...
1
−1
...




so J has eigenvalues n, 0, . . . , 0, with 0 having multiplicity n−1. This implies that L has
eigenvalues 0, n, . . . , n, with n having multiplicity n− 1. So, the number of spanning
trees of Kn equals nn−1/n= nn−2. �

5.7 Totally unimodular matrices
The signed incidence matrix of a graph is an example of a class of very special matrices
with interesting combinatorial properties:

5.7.1 DEFINITION. A matrix A is totally unimodular (TU) if, for every square submatrix D of
A, we have det(D) ∈ {−1,0, 1}.
In this section we will give a characterization of these matrices in a way that is similar
to Kuratowski’s Theorem for graphs (Theorem A.7.7):

5.7.2 THEOREM. Let A be a {0, 1}-matrix. The following are equivalent:
(i) A has a TU signing;

(ii) A cannot be transformed to

M(F7) =




1 1 0 1
1 0 1 1
0 1 1 1




by repeatedly carrying out the following operations:
• deleting rows, columns
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• permuting rows, columns
• transposing the matrix
• pivoting over Z2.

Two terms in this theorem need explaining. A matrix has a TU signing if we can
change some 1s into (−1)s to obtain a TU matrix.

The operation of a pivot does the following (where (x , y) can index an arbitrary
entry, but for the sake of simplicity we assume it has been brought to the top left by
row and column swaps):




y

x α c

b D


→




x

y α−1 α−1c

−bα−1 D−α−1 bc


.

This operation will look weird at first. A less opaque description is the following: we
prepend an identity column to the matrix (which we index by x), then row-reduce the
column indexed by y , and finally delete the column indexed by y:




x y

1 α c

0 b D


→




x y

α−1 1 α−1c

0 b D


→

→



x y

α−1 1 α−1c

−bα−1 0 D−α−1 bc


.

The reason to do this is the following. It is easy to show that a matrix A is TU if and
only if [I A] is TU. We implicitly keep an identity matrix in front of A in mind, with
columns indexed by the rows of A.

Note that the definition of pivoting is valid for any field (and, in fact, for any ring –
commutative or not). The theorem specifies pivoting over Z2.

Theorem 5.7.2 is due to Tutte, who gave an intricate proof. A very clean and beau-
tiful proof was given by Gerards (1989). We can do no better than refer to that paper
for the proof, which takes up only a few pages.

5.8 Where to go from here?
• Jukna (2011), Extremal Combinatorics should, once again, be your first stop.
• Matoušek (2010), Thirty-three miniatures is a small but beautiful book, contain-

ing thirty-three lecture-size chapters on applications of linear algebra, mostly in
combinatorics.
• Aigner and Ziegler (2010), Proofs from THE BOOK is the source of our treatment

of Kirchhoff’s Matrix-Tree Theorem.

Totally unimodular matrices play a key role in combinatorial optimization, as well as
in the field of matroid theory. We will introduce matroids in the next chapter. A good
book introducing combinatorial optimization is
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• Cook, Cunningham, Pulleyblank, and Schrijver (1998), Combinatorial Optimiza-
tion,

but there are many others.





CHAPTER6
The probabilistic method

W E have already seen an example of the probabilistic method, a powerful
technique in combinatorics, which is most useful to show the existence of
certain combinatorial objects. In Theorem 3.6.1 we found a lower bound on

Ramsey numbers by establishing the existence of large graphs with a “wrong” coloring.
In this chapter we will put the technique on firmer footing.

6.1 Probability basics: spaces and events
Let us start with defining the basic tools of probability.

6.1.1 DEFINITION. A probability space is a pair (Ω, Pr) of a finite set Ω, the universe, and a
map Pr : Ω→ R, the measure, satisfying
• Pr(ω)≥ 0 for all ω ∈ Ω;
• ∑ω∈Ω Pr(ω) = 1.

Note that the notion of a probability space, as well as all definitions below, can be
extended to infinite spaces through measure theory. We don’t need these complications,
so we will stick with finite spaces.

6.1.2 DEFINITION. An event is a subset A⊆ Ω. We write Pr(A) :=
∑
ω∈A Pr(ω).

6.1.3 EXAMPLE. Consider a sequence of n coin flips. After each flip we write down an H if
the result is heads, and a T if the result is tails. The universe is the set of potential
outcomes: strings of Hs and T s of length n, i.e. Ω = {H, T}n. Since each flip produces
heads and tails with equal probability 1

2
, we have that Pr(ω) = 1/2n for all ω ∈ Ω.

An example of an event is “The first flip is heads”. This event would be the set
{(HHH · · ·H), (HT H · · ·H), . . . , (HT T · · · T )}.

6.1.4 DEFINITION. The complement of an event A is

A := Ω \ A.

6.1.5 DEFINITION. Events A and B are independent if Pr(A∩ B) = Pr(A)Pr(B).

71
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An example of independent events would be “the first flip is heads” and “the last
flip is tails”, provided n> 1. The following is an easy exercise:

6.1.6 LEMMA. If A and B are independent, then A and B are independent.

6.1.7 DEFINITION. If Pr(B)> 0, then the conditional probability of A given B is

Pr(A | B) = Pr(A∩ B)
Pr(B)

.

Note that Pr( · | B) is, itself, a probability measure.

An example would be “heads comes up five times” given “heads comes up the first
time”. The following three lemmas, whose easy proofs are skipped, will be useful:

6.1.8 LEMMA. Events A and B are independent if and only if Pr(A | B) = Pr(A).

6.1.9 LEMMA. If A, B, and C are events, then

Pr(A | B ∩ C) =
Pr(A∩ B | C)

Pr(B | C) .

6.1.10 LEMMA. Pr(A∩ B ∩ C) = Pr(A | B ∩ C) · Pr(B | C) · Pr(C).

The tool we used in Theorem 3.6.1 is the following:

6.1.11 THEOREM (Union bound). Let A1, . . . , Ak be events. Then

Pr(A1 ∪ · · · ∪ Ak)≤
k∑

i=1

Pr(Ai).

Proof: Easy exercise. �

6.2 Applications
Two-colorability of set systems. Let H = ([n],F ) be a collection of subsets of [n],
and χ : [n]→ {red, blue} a coloring. We say χ is a proper 2-coloring of H if each X ∈ F
has elements of both colors. In other words, there exist u, v ∈ X such that χ(u) 6= χ(v).
If there exists a proper 2-coloring for H then H is said to be 2-colorable. We study the
following problem:

6.2.1 PROBLEM. Let H = ([n],F ) be a set system with |X | = r for all X ∈ F . Find the
maximum value of |F | such that H is guaranteed to be 2-colorable.

Note that n is not an important parameter here, since increasing it without changing
F will not change the problem. Hence we are looking for an answer in terms of r.
Denote this value by m(r). It is easy to obtain an upper bound. If n ≥ 2r − 1, then the
collection of all r-subsets is not 2-colorable: by the Pigeonhole Principle, one color is
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used at least r times. This shows that

m(r)≤
�

2r − 1

r

�
≡ 4r

p
r

.

For a lower bound on m(r), we use the probabilistic method.

6.2.2 THEOREM. If H = ([n],F ) is a set system with |X | = r for all X ∈ F , and |F | < 2r−1,
then H is 2-colorable.

Proof: Suppose |F | < 2r−1. Independently color each element red or blue with prob-
ability 1/2. Pick an X ∈ F . We have

Pr(X monochromatic) =
1

2r +
1

2r =
1

2r−1 .

By the union bound we find

Pr(some X monochromatic)≤
∑
X∈F

Pr(X monochromatic) =
|F |
2r−1 < 1.

Since there is a positive probability that no X is monochromatic, it follows that H must
be 2-colorable. �

Hence we have

2r−1 < m(r)≤ 4r/
p

r,

showing that m(r) grows exponentially in r. A typical feature of proofs using the
probabilistic method is that a gap is left between the lower and upper bounds.

Winners in tournaments. A tournament is a complete graph in which each edge has
been given a direction (see also Definition A.8.2). We can interpret these edges as
outcomes of matches between teams, with the edge pointing from the winner to the
loser of that match. We write x → y if team x beats team y . How can we determine
an overall winner?

A clear winner would be a team that beats all others, but those situations are rare.
A different option is to define a set of winners, as follows: a subset X of the vertices is
a winning set if each team outside X was beaten by at least one team in X . This gives
a lot more flexibility, so one might wonder if there is a value k so that any tournament
has a winning set of size k. The following result refutes this:

6.2.3 THEOREM. For all k ≥ 1 there exists a tournament T = (V, A) such that, for every subset
X of k vertices, there exists a vertex y ∈ V \ X such that y beats all x ∈ X .

Proof: Observe that we may as well prove this for large values of k only, since the
result for smaller values follows from it.

For fixed k, set n = |V | = k + k22k. Pick a tournament on n vertices uniformly at
random, i.e. for each unordered pair {x , y} of vertices, pick one of x → y and y → x ,
each with probability 1/2.
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Fix a subset X of size k, and a vertex y outside X . Clearly,

Pr(for all x ∈ X , y → x) =
1

2k
,

so, conversely,

Pr(there exists x ∈ X , x → y) = 1− 1

2k
.

For distinct vertices y and y ′, the events “y beats all members of X ” and “y ′ beats all
members of X ” are independent (since the edges are disjoint). So it follows that

Pr(for all y ∈ V \ X there exists x ∈ X : x → y) =
�

1− 1

2k

�n−k

=
�

1− 1

2k

�2kk2

≤ e−k2
.

Now we apply the union bound to all sets X :

Pr(there exists X such that no team beats all members of X )≤
�

n

k

�
e−k2

=
�

k+ 2kk2

k

�
e−k2 ≤ (k22k)ke−k2

=

�
k22k

ek

�k

,

which is strictly less than 1 for sufficiently large k. Hence a tournament as desired does
exist. �

Note that such a tournament needs to be big: if n = k then the tournament clearly has
a winning set. How big? It has been shown that one must have n > ck2k for some
constant c.

6.3 Markov’s inequality
It is often useful to work with data derived from events. To that end, we introduce

6.3.1 DEFINITION. A random variable is a function X : Ω→ R. We write

Pr(X = x) :=
∑

ω∈Ω:X (ω)=x

Pr(ω).

In this definition, we can consider “X = x” to be an event in the derived probability
space {X (ω) :ω ∈ Ω}.

As an example, consider the random variable “total number of heads”. Another
example is the random variable that is 1 if the first flip comes up heads, and 0 if it
comes up tails.

6.3.2 DEFINITION. The expectation or expected value of a random variable X is

E[X ] :=
∑
ω∈Ω

X (ω)Pr(ω) =
∑

x
x Pr(X = x),

where the latter sum is defined since im(X ) has only a finite set of elements.
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One last definition:

6.3.3 DEFINITION. Random variables X and Y are independent if, for all x , y ∈ R,

Pr(X = x and Y = y) = Pr(X = x)Pr(Y = y).

An important tool is the following:

6.3.4 THEOREM (Linearity of expectation). Let X1, . . . , Xk be random variables. Then

E[X1+ · · ·+ Xk] =
k∑

i=1

E[X i].

Proof: Easy exercise. �

Note that in the result above, as well as in the union bound, no assumptions were
made regarding independence. The following result, by contrast, only holds for inde-
pendent random variables:

6.3.5 THEOREM. Let X and Y be independent random variables. Then

E[X Y ] = E[X ]E[Y ]. (6.1)

Proof: Another easy exercise. It is illustrative to do the exercise, and figure out why
independence is important here but not in the previous proofs. �

Finally, we state an important inequality:

6.3.6 THEOREM (Markov’s Inequality). Let X be a nonnegative random variable, and t ≥ 0.
Then

Pr(X ≥ t)≤ E[X ]
t

.

Proof:

E[X ] =
∑
a≥0

a Pr(X = a)≥
∑
a≥t

a Pr(X = a)≥
∑
a≥t

t Pr(X = a) = t Pr(X ≥ t). �

6.4 Applications
Sum-free sets. Our first application concerns sum-free sets.

6.4.1 DEFINITION. A set B ⊆ Z is sum-free if x + y 6∈ B for all x , y ∈ B.

6.4.2 PROBLEM. Let A be a finite set of integers. How large a sum-free set does A contain?

For example, if A= [2n] then we can pick B = {n+1, n+2, . . . , 2n}, or {1, 3,5, . . . , 2n−
1}. In both cases |B| = 1

2
|A|. As it turns out, we cannot always find a sum-free subset
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that contains half the elements of A, but the following theorem shows we can achieve
a third:

6.4.3 THEOREM. For every set A of nonzero integers, there exists a sum-free subset B ⊆ A with
|B| ≥ 1

3
|A|.

Proof: Pick a prime p such that p > |a| for all a ∈ A. In Zp, define the set

S := {dp/3e, . . . , b2p/3c}.
Note that |S| ≥ 1

3
(p− 1), and that S is a sum-free subset in the ring Zp.

We pick an x ∈ Zp \ {0} uniformly at random. For this x , define

Ax := {a ∈ A : ax (mod p) ∈ S}.
If a, b ∈ Ax then, since ax (mod p) + bx (mod p) = (a + b)x (mod p) and S is sum-
free, we cannot have a+ b ∈ Ax . Hence Ax is sum-free. Consider the random variable
X := |Ax |. We define

χx(a) :=

(
1 if a ∈ Ax

0 if a 6∈ Ax .

With this we can compute the expected value

E[X ] = E[|Ax |] = E

∑

a∈A

χx(a)


=

∑
a∈A

E[χx(a)] =
∑
a∈A

Pr(ax (mod p) ∈ S)≥ 1

3
|A|,

where we use that Pr(ax (mod p) ∈ S) = |S|/(p− 1) ≥ 1/3. It follows that there must
exist a value of x for which |Ax | ≥ 1

3
|A|. �

It is unknown what the best possible fraction c is such that every set A of nonzero
integers has a sum-free subset B with |B| ≥ c|A|. The following set can be checked to
have no sum-free sets of size more than four, giving an upper bound of 4

10
on c:

{1, 2,3, 4,5, 6,8, 9,10, 18}.
A bigger example is known which gives c ≤ 11

28
.

Another less classical example from additive combinatorics is the following result
from a past International Mathematics Olympiad Shortlist.

6.4.4 THEOREM. For every subset A⊂ Z/n2Z with n elements, there exists a subset B ⊂ Z/n2Z
with n elements such that |A+ B| ≥ n2

2
.

Proof: Pick a random collection of n elements of Z/n2Z, each of the n elements be-
ing taken with probability 1/n2 and all choices being independent. Put the distinct
elements among the n chosen ones in a set B, which may have less than n elements.
Consider the random variable X = |A+ B|. As

X =
∑

i∈Z/n2Z

1i∈A+B,
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we have by linearity of expectation

E[X ] =
∑

i∈∈Z/n2Z

Pr(i ∈ A+ B).

On the other hand, the probability that i 6∈ A+ B is clearly the n−th power of the
probability that a given integer is not in A, that is

Pr(i ∈ A+ B) = 1−
�

1− |A|
n2

�n

= 1−
�

1− 1

n

�n

.

We deduce that

E[X ] = n2
�

1−
�

1− 1

n

�n�

and the result follows from the inequality (1− 1
n
)n < 1

2
. �

Graphs with high girth and high chromatic number.

6.4.5 DEFINITION. A k-coloring of a graph G = (V, E) is a map c : V → [k] such that c(u) 6=
c(v) for all uv ∈ E. The chromatic number χ(G) is the least k for which there exists a
k-coloring.

6.4.6 DEFINITION. The girth of a graph is the length of the shortest cycle.

Note that trees have infinite girth, and chromatic number 2. Since graphs with high
girth look like trees locally, one might wonder if χ(G) is small for such graphs. But this
is not so:

6.4.7 THEOREM. For all positive integers k, l there exists a graph G with χ(G)≥ k and girth at
least l.

Proof: A random graph Gn,p is a graph on n vertices in which each edge appears in-
dependently with probability p. Fix a value n (we will decide on a value later), pick
some λ ∈ (0, 1/l), and define p := nλ−1. Let X be the random variable denoting the
number of cycles of length at most l in Gn,p. Each cycle is determined by its (ordered)
vertex set. A rough estimate is that there are fewer than n j ordered vertex sets of size
j, and each vertex set j forms a cycle with probability p j . By linearity of expectation,
therefore,

E[X ]≤
l∑

j=3

n j p j =
l∑

j=3

nλ j ≤ nλl

1− n−λ
.

Note that λl < 1, so if we choose n sufficiently large then we will have E[X ] < n/4.
Now Markov’s Inequality gives

Pr(X ≥ n

2
)<

n/4

n/2
=

1

2
.

Note that some small cycles may still exist! We will deal with those at the end of the
proof.
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Next, consider the chromatic number of Gn,p. In fact, we will look at the stable set
number α(G), where S ⊆ V is stable if no edge has both endpoints in S. Each color class
is clearly a stable set, so we have

χ(G)≥ |V (G)|
α(G)

.

Pick the number a := d 3
p

ln ne, and consider the event that there is an independent set
of size a. By the union bound, we find

Pr(α(G)≥ a)≤
�

n

a

�
(1− p)(

a
2) ≤ nae−pa(a−1)/2 ≤ nan−3(a−1)/2,

where we used (1 − 1/x) ≤ e−x and the definition of a. For n large enough this
probability will be less than 1/2. One more application of the union bound gives

Pr(X ≥ n/2 or α(G)≥ a)< 1,

so there exists a graph G with less than n/2 short cycles and α(G) < a. We delete
an arbitrary vertex from each of the short cycles. Note that this does not increase the
stable set number. Let G′ be the resulting graph. Then

χ(G′)≥ |V (G
′)|

α(G′)
≥ n/2

3n1−λ ln n
=

nλ

6 ln n
.

Again, choosing n large enough will ensure χ(G′)≥ k. �

We end this section with the probabilistic proof of Theorem 4.6.5.

Second proof of Theorem 4.6.5: Define X = ∪i(Ai ∪ Bi) and consider a random order π
of X and let X i be the event that in this order all the elements of Ai precede all those of
Bi .

To compute the probability of X i note that there are (ai + bi)! possible orders of
the elements in Ai ∪ Bi and the number of such orders in which all the elements of Ai
precede all those of Bi is exactly ai!bi!. Therefore

Pr(X i) =
ai!bi!

(ai + bi)!
=
�

ai + bi

ai

�−1

.

We claim that events X i are pairwise disjoint. Indeed, suppose that there is an
order of X in which all the elements of Ai precede those of Bi and all the elements of A j
precede all those of B j . WLOG, assume that the last element of Ai appears before the
last element of A j . Then, all the elements of Ai precede all those of B j , contradicting
the fact that Ai ∩ B j 6= ;. Therefore, the events X i are pairwise disjoint.

It follows that

1≥
m∑

i=1

Pr(X i) =
m∑

i=1

�
ai + bi

ai

�−1

.

We end this section with a digression about a second very important inequality
involving random variables.
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6.4.8 THEOREM. Let X be a random variable and let t > 0. Then

Pr(|X −E[X ]| ≥ t)≤ E[X
2]−E[X ]2

t2 .

Proof: We use Markov’s Inequality. Namely, we write that

Pr(|X −E[X ]| ≥ t) = Pr(|X −E[X ]|2 ≥ t2)≤ E[X
2]−E[X ]2

t2 ,

and an easy computation using lineary of expectation yields the result. �

In fact, the quantity E[(X − E[X ])2] = E[X 2]− E[X ]2 turns out to be the second
most vital statistic for a random variable after its expectation. It is called the variance
of random variable X and it has a lot of applications. We include one from the topic of
random graphs.

6.4.9 THEOREM. Let Gn be a random graph on n vertices where each of the
�n

2

�
possible edges is

included in the edge set with probability 1/2, independently of the other edges. Then, with
high probability, Gn contains a clique of size 0.5 log2 n.

Sketch of proof: We will solve the problem by lower bounding the probability for the
existence of a clique of size 0.5 log2 n (i.e. finding a lower bound that goes to 1 as n
goes to infinity). First, note that this probability is equal with Pr(X > 0) where X is the
random variable counting the number of 0.5 log2 n cliques. Clearly, we have that

E(X ) =
�

n

0.5 log2 n

��
1

2

�(0.5 log2 n
2 )

We now show that E(X 2) is
� n

0.5 log2 n

�2 �1
2

�2(0.5 log2 n
2 ) + ε with

ε <<

�
n

0.5 log2 n

�2�1

2

�2(0.5 log2 n
2 )

,

so that Var(X ) = E(X 2)− (E(X ))2 = ε is smaller than
� n

0.5 log2 n

�2 �1
2

�2(0.5 log2 n
2 )

. In this
case, by Chebyshev’s inequality, we get that X is concentrated about the mean (when n
goes to infinity), so we are done, since the E(X ) clearly goes to infinity, when n→∞.
(!)

Now, to compute E(X 2). Let X i be the indicator variable for the event that the i-th
subset of size k = 0.5 log2 n forms a clique. We have that X = X1+ . . .+ Xn, so

E(X 2) =
∑
i, j

E(X iX j) =
∑

i

k∑
t=0

∑
j:|Si∩S j |=t

E(X iX j)

=
�

n

k

� k∑
t=0

f (t),

where

f (t) =
∑

j:|Si∩S j |=t

E(X iX j) =
�

k

t

��
n− k

k− t

�
2−k(k−1)+t(t−1)/2
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and by Si we denote the i-th subset of vertices (in our arbitrary indexation).
But

�
n

k

�
·

k∑
t=0

�
k

t

��
n− k

k− t

�
2−k(k−1)+t(t−1)/2 =

�
n

k

�
2−k(k−1) ·

k∑
t=0

�
k

t

��
n− k

k− t

�
2t(t−1)/2

which is
�n

k

�22−k(k−1) + ε =
�n

k

�2 �1
2

�2(k2) + ε for some ε <<
�n

k

�2 �1
2

�2(k2), as one can
easily check. This proves the result, since we saw that this is enough (in (!)). �

We leave it as an exercise to prove that, with high probability, Gn does not contain
a clique of size 3 log2 n.

6.5 The Lovász Local Lemma
Suppose we have a probability space with a number of “bad” events. The probabilistic
method instructs us to show that, with positive probability, none of the bad events
happen. Our basic tool, the union bound, gives

Pr(A∪ B)≤ Pr(A) + Pr(B),

so as long as each of the probabilities on the right-hand side is small enough, there is a
positive probability that none of them happen. If A and B are independent events then,
writing A for the complement of A, we can conclude:

Pr(A∩ B) = Pr(A)Pr(B),

so we only need to show that each of the probabilities on the right-hand side is positive.
Of course, this is a useless observation if these events are not independent. But it turns
out that we can still say something if the dependencies between events are limited.

6.5.1 DEFINITION. An event A is mutually independent of B1, . . . , Bk if, for all I ⊆ [k], event A
is independent of

⋂
i∈I Bi .

Take our example of coin flips. Let A be the event “the first flip and last flip are
the same”, let B1 be the event “the first flip comes up heads”, and let B2 be the event
“the last flip comes up heads”. Then Pr(A | B1) = Pr(A | B2) = Pr(A) = 1/2, but
Pr(A | B1 ∩ B2) = 1. Hence A is not mutually independent of B1 and B2.

6.5.2 LEMMA (Lovász Local Lemma). Let A1, . . . , An be events, such that each Ai is mutually
independent of all but at most d of the remaining A j . Suppose Pr(Ai) ≤ p for all i. if
4pd ≤ 1 then

Pr

 
n⋂

i=1

Ai

!
> 0.

Proof: Our main ingredient is the following
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6.5.2.1 CLAIM. For all integers m, and for all subsets of m events (say A1, . . . , Am, after relabel-
ing), we have

Pr(A1 | A2 ∩ · · · ∩ Am)≤ 2p.

Proof: We prove the claim by induction on m, the case m= 1 being trivial. Suppose
the events A2, . . . , Am were sorted so that A1 is mutually independent of Ak+1, . . . , Am
for some k. Note that we can always find an ordering and a k so that k− 1 ≤ d. By
Lemma 6.1.9,

Pr
�

A1 | A2 ∩ · · · ∩ Am

�
=

Pr
�

A1 ∩ A2 ∩ · · · ∩ Ak | Ak+1 ∩ · · · ∩ Am

�

Pr
�

A2 ∩ · · · ∩ Ak | Ak+1 ∩ · · · ∩ Am

� .

The numerator can be bounded as follows:

Pr
�

A1 ∩ A2 ∩ · · · ∩ Ak | Ak+1 ∩ · · · ∩ Am

�
≤ Pr

�
A1 | Ak+1 ∩ · · · ∩ Am

�
= Pr(A1)≤ p.

For the denominator, we use the union bound and the induction hypothesis:

Pr
�

A2 ∩ · · · ∩ Ak | Ak+1 ∩ · · · ∩ Am

�
= 1− Pr

�
A2 ∪ · · · ∪ Ak | Ak+1 ∩ · · · ∩ Am

�

≥ 1−
k∑

i=2

Pr
�

Ai | Ak+1 ∩ · · · ∩ Am

�

≥ 1− (k− 1)2p ≥ 1− 2pd ≥ 1/2.

Hence

Pr
�

A1 | A2 ∩ · · · ∩ Am

�
≤ p

1/2
= 2p. �

By Lemma 6.1.10,

Pr
�

A1 ∩ · · · ∩ An

�
=

n∏
i=1

Pr
�

Ai | A1 ∩ · · · ∩ Ai−1

�
≥ (1− 2p)n > 0. �

Note that, with some extra work, we can weaken the conditions in the lemma to
ep(d+1)≤ 1, where e is the base of the natural logarithm. There are further strength-
enings of the result that weaken the condition Pr(Ai) ≤ p, and that do not require
symmetry: some events are allowed to have more dependencies than others.

Another important observation is that the lemma does not restrict the number of
events, as long as their interactions are limited. This in particular makes it much more
powerful than the union bound.

6.6 Applications
Two-colorability of set systems. We return to the subject of our first application
(Theorem 6.2.2), namely to find conditions guaranteeing that a set system is 2-colorable.
The next result shows that a system will be 2-colorable if we restrict the intersections
of the sets:
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6.6.1 THEOREM. Let H = ([n],F ) be a set system such that |X | = r for all X ∈ F . If each
X ∈ F intersects at most 2r−3 other members of F , then H is 2-colorable.

Proof: Let F = {X1, . . . , Xk}. Randomly color the elements [n] red and blue. Let Ai be
the event that X i is monochromatic. Then Pr(Ai) = 1/2r−1 as before. Pick p := 1/2r−1.

The event Ai is mutually independent of all A j such that X i ∩ X j = ;. Note that X i
has nonempty intersection with at most 2r−3 of the remaining X j . Pick d := 2r−3. Now

4dp = 4 · 2r−3 · 21−r = 1,

so by the Lovász Local Lemma

Pr(no edge monochromatic) = Pr(A1 ∩ · · · ∩ Ak)> 0. �

Directed cycles (mod k). It is easy to construct a directed graph that avoids an odd
cycle: make sure the underlying graph is bipartite. But can we avoid an even cycle?
Or, more generally, a cycle whose length is a multiple of k for some k? The next result
gives a condition under which such a cycle cannot be avoided:

6.6.2 THEOREM. Let D = (V, A) be a digraph with minimum outdegree δ and maximum inde-
gree ∆. If 4∆δ(1− 1/k)δ ≤ 1 then D contains a directed cycle of length 0 (mod k).

Proof: Let D be such a digraph. First note that the conditions do not change if we
remove arc coming out of a vertex of outdegree more than δ. Hence we may assume
each vertex has outdegree exactly δ. Let f : V → {0, 1, . . . , k−1} be a random coloring
of V . Let Av be the event that there is no u ∈ V with (v, u) ∈ A and f (u) ≡ f (v) + 1
(mod k). Clearly

Pr(Av) =
�

1− 1

k

�δ
.

Define N+(v) := {w ∈ V : (v, w) ∈ A}. Note that Av is independent of all events that do
not involve N+(v); specifically, Av is mutually independent of all Au except those with

N+(v)∩ ({u} ∪ N+(u)) 6= ;.

Each vertex in N+(v) has at most ∆− 1 arcs pointing to it from vertices other than v,
so v is mutually independent from all but at most δ(1+ (∆− 1)) = δ∆ vertices u. By

the Lovász Local Lemma, with p =
�

1− 1
k

�δ
and d = δ∆, we find that

Pr

 ⋂
v∈V

Av

!
> 0,

so there is a coloring such that, for all v ∈ V there exists u ∈ V with f (u) ≡ f (v) + 1
(mod k).

Now start at any vertex v1, and find a sequence v1, v2, v3, . . . of vertices so that
(vi , vi+1) ∈ A and f (vi+1) ≡ f(vi) + 1 (mod k) for all i. Since V is a finite set, some
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vertex must repeat. Pick j and l such that l < j, vl = v j , and j − l minimal. Then
vl vl+1 · · · v j is a cycle, and

f (v j)≡ f (vl) + ( j− l − 1) (mod k).

Since f (v j) = f (vl), it follows that j − l − 1 ≡ 0 (mod k). But j − l − 1 is precisely the
length of the cycle! �

6.7 Where to go from here?
We list two books:
• Alon and Spencer (2008), The Probabilistic Method is a beautiful, readable, and

comprehensive book on the subject. After each chapter an intermezzo titled “The
probabilistic lens” gives a particularly striking application of the theory just dis-
cussed.
• Jukna (2011), Extremal Combinatorics devotes several chapters to the probabilis-

tic method.





CHAPTER7
Spectral Graph Theory

The founders of Google computed the Perron-Frobenius eigenvector of the
web graph and became billionaires.

Brouwer and Haemers (2012)

A LGEBRAIC graph theory is a field of combinatorics in which tools from algebra
are used to study graph properties. The rank polynomial (to be discussed in
Chapter 11) may be counted as such an algebraic tool. In this chapter we will

focus on a specific tool: the set of eigenvalues associated with a graph (also called the
spectrum).

7.1 Eigenvalues of graphs

7.1.1 Eigenvalues of symmetric matrices

We start with a quick refresher on eigenvalues. The proofs of the standard results are
omitted.

7.1.1 DEFINITION. Let A be an n× n matrix (over C, say). If λ ∈ C and v ∈ Cn, v 6= 0, are
such that Av = λv then λ is an eigenvalue of A and v is the corresponding eigenvector.

The spectrum of A is the list of eigenvalues, together with their multiplicities (i.e.
the dimension of the space of eigenvectors associated with that eigenvalue).

7.1.2 LEMMA. Let A be an n × n matrix, and r a positive integer. The eigenvalues of Ar are
precisely the rth powers of the eigenvalues of A.

7.1.3 DEFINITION. The characteristic polynomial of A is

ϕ(A, x) := det(x I − A).

7.1.4 LEMMA. The eigenvalues of A are the roots of ϕ(A, x).

85
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7.1.5 DEFINITION. The trace of an n× n matrix A is

tr(A) :=
n∑

i=1

Aii .

7.1.6 LEMMA. If A is an n× n matrix, then tr(A) equals the sum of the eigenvalues of A.

We continue with a few facts that are particular to symmetric, real matrices. For
completeness we give the proofs of these.

7.1.7 LEMMA. Let A be an n× n symmetric matrix over R. Let u, v be eigenvectors of A with
distinct eigenvalues. Then u is orthogonal to v.

Proof: Suppose Au= λu and Av = τv with λ 6= τ. Then

uTτv = uT (Av) = uT Av = uT AT v = (uT AT )v = (Au)T v = uTλv.

Since λ 6= τ, it follows that uT v = 〈u, v〉= 0. �

7.1.8 LEMMA. Let A be an n× n symmetric matrix over R. Then all eigenvalues of A are real.

Proof: Suppose Au= λu. Taking complex conjugates we find Au= λu. So

λuT u= uT Au= λuT u.

Since u 6= 0 by definition, we have uT u= ‖u‖2 > 0, and therefore λ= λ. �

The following result, a strengthening of Lemma 7.1.7, will prove very useful:

7.1.9 THEOREM. Let A be an n×n symmetric matrix over R. Then Rn has an orthonormal basis
of eigenvectors.

Proof: We start with the following:

7.1.9.1 CLAIM. Let U be a subspace of Rn such that AU ⊆ U. Then AU⊥ ⊆ U⊥.

Proof: Consider u ∈ U and v ∈ U⊥, so 〈u, v〉= 0. Then vT Au= vT u′ for some u′ ∈ U .
By definition of U⊥ we have vT u′ = 0, so (Av)T u= 0 for all u ∈ U , so Av ∈ U⊥. �

7.1.9.2 CLAIM. A has at least one real eigenvector.

Proof: Note that ϕ(A, x) has at least one root (over C), say θ . This root is real by
Lemma 7.1.8. Now ϕ(A,θ) = det(θ I − A) = 0, so ker(θ I − A) 6= ; (over R). Any
vector in that kernel is an eigenvector with eigenvalue θ . �

In fact, we can find such an eigenvector in a more restricted space:

7.1.9.3 CLAIM. Let U be a subspace of Rn such that AU ⊆ U. Then U contains a real eigenvector
of A.
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Proof: Let {r1, . . . , rk} be an orthonormal basis of U , and let R be a matrix whose ith
column is ri . We now have that

AR= RB

for some square matrix B. Note that

RT AR= RT RB = B,

from which we conclude that B is real and symmetric (since RT AR is). By the previous
claim, B has a real eigenvector v, say with eigenvalue λ. Now

ARv = RBv = λRv,

so Rv is an eigenvector of A with eigenvalue λ. �

Now the result follows easily by induction. �

Finally, a useful interpretation of the largest eigenvalue:

7.1.10 LEMMA. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of a symmetric, real, n× n matrix A.
Then λ1 =max{〈v, Av〉 : v ∈ Rn,‖v‖= 1}.

Proof: Exercise. �

7.1.2 Eigenvectors of graphs

7.1.11 DEFINITION. Let G be a graph. The eigenvalues, eigenvectors, and spectrum of G are
those of the adjacency matrix A(G), given by

(A(G))i, j =

(
1 if i j ∈ E(G)
0 otherwise.

A key property, that we will use time and again, is the following:

7.1.12 LEMMA. Let A= A(G) for a graph G. Then (Ar)uv is the number of walks from u to v of
length r.

7.1.13 COROLLARY. We have the following:
• tr(A(G)) = 0

• tr(A(G)2) = 2|E(G)|
• tr(A(G)3) = 6t, where t is the number of triangles of G.

Note that those values are determined by the spectrum of G. However, the spectrum
does not determine the graph uniquely: one can check that both graphs in Figure 7.1
have spectrum {−2,−1(2), 1(2), 1−p7,1+

p
7}. Here the superscript (2) denotes the

multiplicity of the eigenvalue.
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FIGURE 7.1
Two cospectral graphs

7.1.3 Finding eigenvalues

It is often better to look for eigenvectors first, rather than trying to find roots of the
characteristic polynomial. If A is the adjacency matrix of G, then we can interpret an
eigenvector v as a function v : V (G)→ R. If λ is the eigenvalue of v then we have, for
all vertices u ∈ V (G),

∑
uw∈E(G)

v(w) = λv(u).

One particular eigenvector is often useful:

7.1.14 LEMMA. The all-ones vector 1 is an eigenvalue of G if and only if G is k-regular for some
k.

Proof: This follows directly from

A1=




deg(v1)
deg(v2)

...
deg(vn)




. �

7.2 The Hoffman-Singleton Theorem
We look at graphs with specified girth and minimum degree.

7.2.1 LEMMA. Let g = 2k+ 1 be an odd integer, and r a positive integer. If G is a graph with
girth g and minimum degree r, then G has at least

1+ r + r(r − 1) + r(r − 1)2+ · · ·+ r(r − 1)k−1

vertices.
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Sketch of proof: Start drawing the graph from an arbitrary single vertex v, in a tree-
like fashion: all neighbors of v are one level below v, all their neighbors are below that,
and so on for k levels. Since the graph has no cycles of length at most 2k, these vertices
are necessarily distinct.

v

≥ r

≥ r − 1
�

We ask ourselves whether this bound is ever attained. Such graphs are called Moore
graphs. The following result almost settles the question for girth five:

7.2.2 THEOREM. Moore graphs with g = 5 exist for r = 2, 3,7, and maybe 57.

FIGURE 7.2
The Petersen graph, drawn as a Moore graph. Note that Moore graphs

must look like this for every choice of top vertex!

Proof: The case r = 2 is the five-cycle, so assume r ≥ 3. Let G be an r-regular Moore
graph, and let A := A(G). Note that the number of vertices is n= 1+r+r(r−1) = r2+1.

Consider B := A2. Then Bi j equals the number of neighbors common to vertices i
and j. Note that, since G has but 1+ r + r(r − 1) vertices, no pair of vertices can have
distance more than 2 (by adapting the argument from the previous lemma). From this
we conclude

Bi j =





r if i = j

0 if i 6= j, i j ∈ E(G)
1 if i 6= j, i j 6∈ E(G).

So for i 6= j we have Bi j = 1− Ai j . Hence we can write

A2 = r I + J − I − A,

where J is the n× n all-ones matrix. We will use this relation to help determining the
eigenvalues of A. Since A is regular, the vector 1 is an eigenvector with eigenvalue r.
We may assume that all remaining eigenvectors v are orthogonal to 1. It follows that
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J v = 0. Now

A2v = λ2v

(r I + J − I − A)v = (r − 1−λ)v
so λ2+λ− (r − 1) = 0. This gives two more eigenvalues:

ρ1 =
−1−p4r − 3

2
, ρ2 =

−1+
p

4r − 3

2

with multiplicities m1, m2. Using that the sum of the multiplicities is n, and the sum of
the eigenvalues is tr(A) = 0, we find

m1+m2 = n− 1= r2

ρ1m1+ρ2m2+ r = 0.

We substitute our expressions for ρ1,ρ2 in the second equation, and use the first to
simplify it. This gives us

(m2−m1)
p

4r − 3= r2− 2r. (7.1)

Note that m1, m2, and r are integers. If
p

4r − 3 is not integral, then we had better
have m1 = m2, and therefore r2 = 2r. This has no solutions for r ≥ 3. Hence we
may assume

p
4r − 3 is integral, i.e. 4r − 3 = s2 for some integer s. It follows that

r = (s2+ 3)/4. Substituting this into (7.1) and rearranging, we obtain

s4− 2s2− 16(m1−m2)s = 15.

Hence s must be a divisor of 15, so s ∈ {1,3, 5,15}. But then r ∈ {1,3, 7,57}. We
assumed r ≥ 3 so, adding the case r = 2, the result follows. �

Note that the case r = 2 is the 5-cycle, the case r = 3 is the Petersen graph, and
the case r = 7 is a graph known as the Hoffman-Singleton graph. It is an open problem
whether a Moore graph with r = 57 exists.

7.3 The Friendship Theorem and Strongly Regular
graphs
The following result is proven using similar ideas to the proof of the Hoffman-Singleton
Theorem.

7.3.1 THEOREM (Friendship Theorem). If G = (V, E) is such that every pair of vertices has
exactly one common neighbor, then G contains a vertex adjacent to all others.

In other words: in a group of people, if any two share exactly one common friend,
then there must be a “politician” who is friends with all.

Proof: Suppose the result if false, and let G = (V, E) be a friendship graph without
politician.
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7.3.1.1 CLAIM. G is regular.

Proof: Pick nonadjacent vertices u and v, such that deg(v) ≤ deg(u). Let w1, . . . , wk
be the neighbors of u, and let w1 be the neighbor shared with v. Each of the wi , i > 1,
has a common neighbor with v, say zi . No two of the zi can be the same, because
if zi = z j then wi and w j are common neighbors of both u and zi , contradicting the
assumption of the theorem. Hence deg(v) ≥ deg(u), and therefore the degrees are
equal.

Now if w 6∈ {u, v, w1}, then w is adjacent to at most one of u and v, and by the
previous argument deg(w) = deg(u) = deg(v). Finally, by our assumption there is
some vertex w such that w1 is not adjacent to w. It follows that also deg(w1) =
deg(w). �

Consider the adjacency matrix A := A(G). This time,

A2 = J + (k− 1)I .

A again has eigenvalue k (with eigenvector 1). Consider an eigenvector v orthogonal
to 1, having eigenvalue λ. Then

A2v = λ2v

(J + (k− 1)I)v = (k− 1)v,

so λ=±pk− 1. Let the multiplicities of these eigenvalues be m+, m−. Since tr(A) = 0
is the sum of the eigenvalues, we have

k+ (m+−m−)
p

k− 1= 0.

Bringing k to the other side and squaring, we find

k2 = (m−−m+)
2(k− 1),

so we conclude that k− 1 divides k2. Since k− 1 also divides k2 − 1 = (k− 1)(k+ 1),
we must have k− 1 ∈ {0,1}, or k ∈ {1, 2}. If k = 1 then G is a single edge, and if k = 2
then G is a triangle. Both of these have a vertex adjacent to all others. �

The key properties of the counterexample studied in the proof can be generalized
as follows:

7.3.2 DEFINITION. A graph G = (V, E) is strongly regular with parameters (n, k, a, c) if G has
n vertices, G is k-regular, every pair of adjacent vertices has a common neighbors, and
every pair of nonadjacent vertices has c common neighbors.

It follows that the Moore graphs are (r2+1, r, 0, 1)-strongly regular, and the graph in
the proof above is (k2−k+1, k, 1, 1)-strongly regular. A difficult problem is to determine
the parameter sets for which strongly regular graphs exist (as is evidenced by the open
problem whether a (3250, 57,0, 1)-strongly regular graph exists). The parameters are
not independent. We state a few easily checked facts:

7.3.3 LEMMA. Let G be an (n, k, a, c)-strongly regular graph with n > k+ 1. The following are
equivalent:
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• G is not connected;
• c = 0;
• a = k− 1;
• G is isomorphic to mKk+1 for some m> 1.

As an example, the graph 5K3 consists of five disjoint triangles.

7.3.4 LEMMA. Let G be an (n, k, a, c)-strongly regular graph. Then k(k−a−1) = (n− k−1)c.

Sketch of proof: Count the number of edges between a neighbor and a non-neighbor
of a vertex v in two ways. �

7.4 Bounding the stable set number
Things get interesting when the eigenvalues appear in the statement of the theorem.
Recall that α(G) is the stable set number: the size of a largest subset of vertices such
that no edge has both ends in this set.

7.4.1 THEOREM. Let G = (V, E) be a k-regular graph on n vertices, with eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λn. Then

α(G)≤ n

1−λ1/λn
.

Proof: Consider an independent set S, define α := |S|, and define a vector xS by

(xS)v =

(
1 if v ∈ S

0 otherwise.

Consider an orthonormal basis of eigenvectors B = {v1, . . . , vn}, where v1 =
1p
n
1. Now

we can find constants a1, . . . , an so that

xS =
n∑

i=1

ai vi .

Since B is orthonormal,

〈xS , v1〉=
αp
n
= a1.

For the same reason,

〈xS , xS〉= α=
n∑

i=1

a2
i .

Furthermore

〈xS , AxS〉= x T
S AxS =

∑
x ,y∈S

Ax y = 0,
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since no edge is contained in S. Combining these, we see

0= 〈xS , AxS〉=
n∑

i=1

λia
2
i ≥ λ1a2

1 +λn

n∑
i=2

a2
i = λ1

α2

n
+λn

�
α− α

2

n

�
.

Hence

(λ1−λn)
α2

n
≤−αλn

α≤ −nλn

λ1−λn
=

n

1−λ1/λn
. �

We leave it as an exercise to prove that xS is an eigenvector if equality holds.

7.4.2 EXAMPLE. The Petersen graph has eigenvalues
¨

3,
−1+

p
9

2
,
−1−p9

2

«
= {3,1,−2}.

Hence

α(G)≤ 10

1− 3/(−2)
= 4,

which is tight.

We end this section with a lower bound for the stable set number due to Caro and
Wei.

7.4.3 THEOREM. Let d1, . . . , dn be the degrees of the vertices of a graph. Prove that

α(G)≥ 1

d1+ 1
+ . . .+

1

dn+ 1
≥ |V (G)|2

2|E(G)|+ |V (G)|
The proof uses the probabilistic method and is very surprising.

Proof: Consider a random permutation σ of the vertices of our graph, all permutations
having equal probability 1/n!. Let Ai be the event that σ(i) < σ( j) for any neighbor j
of i. We claim that

Pr(Ai) =
1

di + 1
.

Indeed, we need to find the number of permutations σ of the vertices such that σ(i)<
σ( j) for any neighbor j of i. If y1, . . . , ydi

are the neighbors of i, there are
� n

di+1

�
possibilities for the set ¦

σ(i),σ(y1), . . . ,σ(ydi
)
©

,

di! ways to permute the elements of this set, and (n − di − 1)! ways to permute the
remaining vertices. So

Pr(Ai) =
�

n

di + 1

�
· (n− di − 1)!di!

n!
=

1

di + 1
,
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as claimed. Let X now be the random variable

X (σ) =
n∑

i=1

1σ∈Ai
.

By linearity of expectation, we have that

E[X ] =
n∑

i=1

Pr(Ai) =
n∑

i=1

1

di + 1
.

Hence one can find σ such that

X (σ)≥
n∑

i=1

1

di + 1
.

It is clear that the set of vertices i such that σ ∈ Ai satisfies both properties. This proves
the first inequality.

The second inequality is just a simple application of the Cauchy-Schwarz Inequal-
ity. �

One of the most popular uses of the Caro-Wei theorem is a really quick proof of
Theorem 4.1.2. We leave this deduction as an exercise.

7.5 Expanders
Strongly regular graphs (with c > 0) have the property that each pair of vertices has
distance at most 2. Moore graphs of girth g = 2k+ 1 have distance at most k. Graphs
in which the diameter (maximum distance between vertices) is small have many appli-
cations in computer science, in particular when the number of edges is not too large.
However, as we have seen in the proof of the Hoffman-Singleton theorem, they may be
hard to come by. In this section we will study families of graphs with similarly good
properties: expander graphs. Qualitatively, expander graphs are
• Highly connected (i.e. one can find many different paths between pairs of ver-

tices), and
• Sparse (i.e. the number of edges is small compared to the complete graph on the

same vertex set).
For a subset S of the vertices of a graph G, define the neighbor set N(S) := {v ∈ V (G)\S :
uv ∈ E(G) for some u ∈ S}.

7.5.1 DEFINITION. Let n, d be positive integers and c > 0 a real number. A graph G = (V, E)
is an (n, d, c)-expander if n = |V |, if G is d-regular, and if, for all S ⊆ V with |S| ≤ n/2
we have

|N(S)| ≥ c|S|.

This definition states that, starting from a certain set, if we repeatedly add all neighbors
of that set, then in each step we will add a fair number of new vertices – at least until
we have reached half of all vertices. Without proof we state the following:

7.5.2 PROPOSITION. An (n, d, c)-expander has diameter at most 2(k+ 1), where

k > log1+c
n

2(1+ d)
.
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7.5.1 Spectral gap bound

Verifying whether a given graph is an expander is a difficult task when working from
the definition: one must compute |N(S)|/|S| for exponentially many subsets. Luckily
eigenvalues come to the rescue!

7.5.3 THEOREM. Let G be a d-regular graph on n vertices with eigenvalues d = λ1 ≥ λ2 ≥ · · · ≥
λn. Then G is an (n, d, c)-expander for

c =
λ1−λ2

2λ1
.

As a first step in our proof we look at the edges sticking of a set S, rather than the
neighbor set.

7.5.4 DEFINITION. If S, T ⊆ V (G) are disjoint, then

e(S, T ) := |{uv ∈ E(G) : u ∈ S, v ∈ T}| .

7.5.5 LEMMA. Let G be a d-regular graph on n vertices with eigenvalues d = λ1 ≥ λ2 ≥ · · · ≥
λn. Let S ⊆ V (G) and T := V (G) \ S. Then

e(S, T )≥ (λ1−λ2)|S||T |
n

Proof: Let G = (V, E), S, and T be as stated, and define s := |S| and t := |T |= n−s. We
consider the matrix D−A, where D = dI is the diagonal matrix with d on the diagonal,
and A= A(G) (cf. Theorem 5.6.2). Note that D−A has the same eigenvectors as A, with
eigenvalues d − λi for i ∈ [n]. Let {v1, . . . , vn} be an orthogonal basis of eigenvectors
with v1 = 1. For all x ∈ Rn, we have

〈(D− A)x , x〉=
∑
u∈V

 
d x2

u −
∑

v∈V :uv∈E

xu xv

!
= d

∑
u∈V

x2
u − 2

∑
uv∈E

xu xv =
∑
uv∈E

(xu− xv)
2.

Now pick x such that

xu =

(
−t if u ∈ S

s if u ∈ T.

Note that 〈x ,1〉= 0, so x is a linear combination of the remaining eigenvectors v2, . . . , vn.
Since d −λ2 is the second smallest eigenvalue of D− A, we find

〈(D− A)x , x〉 ≥ (d −λ2)〈x , x〉= (d −λ2)(st2+ ts2) = (d −λ2)stn.

On the other hand,

〈(D− A)x , x〉=
∑
uv∈E

(xu− xv)
2 = e(S, T ) · (s+ t)2 = e(S, T ) · n2,

so indeed

e(S, T )≥ (d −λ2)st

n
. �
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Proof of Theorem 7.5.3: Consider a subset S ⊆ V (G) with |S| = s ≤ n/2. By the theo-
rem, there are at least

(λ1−λ2)s(n− s)
n

≥ (λ1−λ2)s
2

edges from S to V (G) \ S. No vertex in V (G) \ S is incident with more than d of these
vertices (since G is d-regular), so

|N(S)| ≥ (λ1−λ2)s
2d

,

and the result follows. �

7.5.2 Random graphs are good expanders

Although we can now recognize expanders, we still don’t know how to find them. In
particular, we want to solve the following problem. Choose a value of d, and pick some
constant c depending on d. Then find infinitely many values n for which there exists
an (n, d, c)-expander. In fact, it is not clear that such infinite families exist! Luckily,
random graphs come to the rescue. We follow most textbooks and prove the result only
for a different notion of expander graph:

7.5.6 DEFINITION. A bipartite graph G with color classes L and R of size n each is a (d,β)-
expander if the degrees in L are d and any set S ⊂ L of at most n/d vertices has at least
β |S| neighbors (in R).

7.5.7 THEOREM. Let d ≥ 4, and let G be a random bipartite graph with color classes L and R of
size n each, obtained by connecting each vertex in L to d vertices in R chosen uniformly at
random. Then

Pr(G is a (d, d/4)-expander)> 0.

Proof: For S ⊆ L and T ⊆ R, let AS,T denote the event that all neighbors of S are in T .
Using the union bound, this probability is bounded by

Pr(AS,T )≤
� |T |

n

�d|S|
.
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Now let β := d/4≥ 1. By the union bound again, and using that
�n

k

�≤
�

ne
k

�k
, we find

Pr
�

There are S ⊆ L,T ⊆ R with |S| ≤ n

d
, |T |< β |S|

�

≤
n/d∑
s=1

�
n

s

��
n

βs

��
βs

n

�ds

≤
n/d∑
s=1

�
n

βs

�2�βs

n

�ds

≤
n/d∑
s=1

�
ne

βs

�2βs�βs

n

�ds

=
n/d∑
s=1

�
4ne

ds

�ds/2� ds

4n

�ds

=
n/d∑
s=1

�
eds

4n

�ds/2

≤
n/d∑
s=1

� e

4

�ds/2

≤
∞∑

s=1

� e

4

�ds/2
=
(e/4)d/2

1− (e/4)d/2 < 1. �

Several uses of expander graphs rely on the fact that we can turn this statement
on its head: expanders can be good approximations of random graphs, i.e. they are
pseudorandom. This, however, is beyond the scope of these notes.

7.5.3 Explicit constructions

In spite of a more relaxed condition compared to strongly regular graphs, expander
graphs are still not easy to construct. Most constructions rely on algebraic relations or
even on deep results from number theory. We sketch two examples, skipping the —
involved — proofs.

7.5.8 THEOREM (Margulis’ expanders). Let V = Zn × Zn and define an 8-regular multigraph
G = (V, E, ι) (i.e. potentially having multiple edges and loops) as follows. Let

T1 =

�
1 2
0 1

�
, T2 =

�
1 0
2 1

�
, e1 =

�
1
0

�
, e2 =

�
0
1

�
.

Each vertex v ∈ Zn ×Zn is adjacent to T1v, T2v, T1v + e1, T2v + e2, and the four inverses.
Then G is is an (n, 8, 0.46)-expander.

7.5.9 THEOREM. Let p be prime, and let V = Zp. Define the multigraph G = (V, E) having
edge set {{x , x + 1} : x ∈ Zp} ∪ {{x , x−1} : x ∈ Zp} (taking 0−1 = 0). Then G is a
(p, 3,ε)-expander for some ε > 0 independent of p.

7.5.4 Ramanujan graphs

It is known that the second largest eigenvalue λ2 of a d-regular graph G can only
be slightly smaller than 2

p
d − 1. Graphs with λ2 ≤ 2

p
d − 1 are called Ramanujan

graphs. The examples in the previous section are not Ramanujan graphs. The follow-
ing construction does yield Ramanujan graphs, but at the cost of sacrificing constant
degree:

7.5.10 THEOREM. Let G = (V, E) be a multigraph, defined by picking a prime p, setting V =
(Zp \ {0})×Zp, and joining vertices (a, b) and (c, d) by an edge if and only if ac = b+ d
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(mod p). Then G is (p− 1)-regular. Moreover, if λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues
of G, then λ2 <

p
3p.

Sketch of proof: One can show that
(i) (a, b) and (c, d) have no common neighbor if a = c or b = d (but not both);

(ii) (a, b) and (c, d) have exactly one common neighbor otherwise.
If we take A to be the adjacency matrix (with a 1 on the diagonal for each loop), then
once again A2 has the degrees on the diagonal, and the number of length-2 walks from
u to v off the diagonal. Then

A2 = J + (p− 2)I − B,

where B is the adjacency matrix of the “error” graph H with an edge between (a, b)
and (c, d) if and only if a = c or b = d (but not both). Note that H is (2p− 3)-regular.

Let v be an eigenvector of G orthogonal to 1, and let λ be the corresponding eigen-
value. Then

λ2v = (p− 2)v− Bv,

so v is an eigenvector of B with eigenvalue p − 2− λ2. The degree 2p − 3 of H is an
upper bound on the absolute value of any eigenvalue of H, so

p− 2−λ2 ≥−2p+ 3, (7.2)

and therefore λ <
p

3p. �

7.6 Where to go from here?
Textbook writers in this field have been prolific. We list a few, ranging from accessible
to advanced.

• Godsil and Royle (2001), Algebraic Graph Theory focuses on the connections be-
tween algebra (including linear algebra) and graphs.
• Bollobás (1998), Modern Graph Theory contains many topics not found in the

usual texts on graph theory, including spectral graph theory and random graphs.
• Brouwer and Haemers (2012), Spectra of Graphs is the most specialized text in

this list, but at the same time the most thorough treatment of the subject.
• Brualdi (2011), The mutually beneficial relationship of graphs and matrices de-

scribes just what it says: it looks at applications of matrix theory in graph theory,
but also the other way. Based on a series of 10 lectures, so not too long.
• Brouwer, Cohen, and Neumaier (1989), Distance-regular Graphs discusses a fam-

ily of graphs generalizing strongly regular graphs. There are deep connections
with many corners of algebraic combinatorics. Sadly out of print.
• Lubotzky (2012), Expander Graphs in Pure and Applied Mathematics is a detailed

survey of the theory of expander graphs.
• Tao (2012), 254B - Expansion in Groups is a set of lecture notes on the subject,

focusing on constructions. Contains a good introduction and many hyperlinks
and references.



CHAPTER8
Combinatorics versus topology

T HERE is a deep and fruitful interaction between combinatorics and topology.
Sometimes combinatorial reasoning provides an elegant proof of a topological
fact; sometimes topology helps to prove a result in combinatorics. In this chapter

we will see examples of both.

8.1 The Borsuk-Ulam Theorem
We start our exploration with an important topological result, the Borsuk-Ulam Theo-
rem.

8.1.1 DEFINITION. The n-dimensional sphere (or simply n-sphere) is

S n :=
¦

x ∈ Rn+1 : ‖x‖= 1
©

.

8.1.2 THEOREM. For every continuous function f : S n→ Rn, there exists a point x ∈ S n such
that f (−x) = f (x).

In the case n = 2, this can be interpreted as “at any time there exist two antipodal
points on earth with the same temperature and the same atmospheric pressure.” In our
application we will use the following corollary:

8.1.3 COROLLARY. Let U0, U1, . . . , Un be subsets of S n, each of which is either open or closed,
such that their union covers the sphere S n. Then there exist an inde i ∈ {0, . . . , n} and an
x ∈ S n such that x ,−x ∈ Ui .

Sketch of proof: We prove the case where all Ui are closed. Define a function f : S n→
Rn by

f (x) :=
�
dist(x , U1), . . . , dist(x , Un)

�
,

where dist(x , U) :=miny∈U ‖x − y‖ is the infimum of the distance between x and any
point in U . By the Borsuk-Ulam Theorem, there exists an x ∈ S n such that dist(x , Ui) =
dist(−x , Ui) for all i ∈ {1, . . . , n}. If dist(x , Ui) = 0 for any such i then we are done,
since then x ,−x ∈ Ui (as Ui is closed). Otherwise, since U0, . . . , Un is a cover and
x ,−x 6∈ U1 ∪ · · · ∪ Un, we must have x ,−x ∈ U0. �

99
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8.2 The chromatic number of Kneser graphs
We apply the Borsuk-Ulam Theorem to compute the chromatic number of a famous
family of graphs.

8.2.1 DEFINITION. The Kneser graph KGn,k is the graph with as vertex set the collection of all
subsets of [n] of size k, and as edge set

E(KGn,k) = {{A, B} : A, B ∈ V (KGn,k), A∩ B = ;}.

See Figure 8.1 for KG5,2.

{1,2}

{3,5} {4,5}
{3,4}

{1,3}
{2,3}

{1,4}
{2,5}

{2,4} {1,5}

FIGURE 8.1
The Kneser graph KG5,2.

Let us first take a look at the stable set number of KGn,k. If k ≤ n/2 then it follows
from the Erdős-Ko-Rado Theorem (4.2.4) that

α(KGn,k) =
�

n− 1

k− 1

�
=

k

n
|V (KGn,k)|.

Next, the chromatic number. As in the proof of Theorem 6.4.7, an easy bound is

χ(KGn,k)≥
|V (KGn,k)

α(KGn,k)
.

However, unlike the situation in that theorem, this bound is not tight. Take, for instance,
the case n= 3k−1. Then the bound states that χ(KGn,k)≥ 3. The next theorem states
that this can be far off. In fact, the chromatic number grows as a function of n.

8.2.2 THEOREM. For all integers k ≥ 0 and n≥ 2k− 1, we have χ(KGn,k) = n− 2k+ 2.

Proof: First we show that a coloring with n− 2k + 2 colors exists, by explicitly con-
structing one. Remember that vertices correspond to k-subsets, and we will use the
terms interchangeably. Start by coloring all k-subsets of {1,2, . . . , 2k− 1} with color 1.
Then color each remaining k-subset by its maximal element. This uses

1+ n− (2k− 1) = n− 2k+ 2



8.2. THE CHROMATIC NUMBER OF KNESER GRAPHS 101

colors.
Next, we show that there is no coloring with d = n− 2k+ 1 colors. Suppose, for a

contradiction, that there is a d-coloring of KGn,k. Let X be a set of n points of S d that
lie in general position, i.e. no d + 1 of them lie in a d-dimensional hyperplane through
the origin. Pick an arbitrary bijection X → [n]. Then each k-subset of X corresponds
to a vertex of KGn,k. For i ∈ [d], let Ai be the family of k-subsets of X whose vertex is
colored i. We use these to find a covering U0, . . . , Ud of the sphere S d , as follows. For
i ∈ [d] (so i > 0) and x ∈ S d we say

x ∈ Ui if there exists A∈Ai such that, for all y ∈ A : 〈y, x〉> 0. (8.1)

In words, all points of A lie in the open hemisphere with pole x . Finally, U0 := S d \
(U1 ∪ · · · ∪ Ud).

Note that U1, . . . , Ud are open sets, whereas U0 is closed. By Corollary 8.1.3, there
exist an index i and point x such that x ,−x ∈ Ui . We distinguish two cases:

Case i = 0. By the definition of the Ui , no k-subset is contained in either the hemi-
sphere centered around x , and no k-subset is contained in the hemisphere centered
around −x . Indeed: such a k-subset would have a color, i say, and then x or −x would
be in Ui (and therefore not in U0). But X contains n points, so there must be at least
n− 2k+ 2≥ d + 1 points on the equator, i.e. lying in neither of the open hemispheres.
This is contradicts the fact that the points of X are in general position.

Case i > 0. Now there must be a k-subset A, fully contained in the open hemisphere
centered around x , having color i. Likewise, there must be a k-subset B, fully con-
tained in the open hemisphere centered around −x , having color i. But now A and
B are disjoint, so {A, B} is an edge of KGn,k, so A and B cannot both receive color i, a
contradiction. �

Kneser graphs know many variants and generalizations. An obvious one is to look
at arbitrary set families.

x

−x

< k

< k

≥ d + 1

x

−x

A

B

FIGURE 8.2
Detail of the proof of Theorem 8.2.2, case i = 0 (left) and case i > 0

(right).
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8.2.3 DEFINITION. Let F be a family of sets. Then KG(F ) is the graph with vertex set F and
as edge set

E(KG(F )) = {{A, B} : A, B ∈ F , A∩ B = ;}.

Recall, from Sections 6.2 and 6.6, that a set system F is 2-colorable if the elements
of the underlying ground set can be 2-colored so that each member of F contains
elements of each color.

8.2.4 DEFINITION. The 2-colorability defect cd2(F ) of a set family F is the smallest number
of elements X such that the family

{A∈ F : A∩ X = ;}
is 2-colorable.

8.2.5 EXAMPLE. Consider the collection of all k-subsets of [n]. Delete any n−2k+2elements.
The remaining subsets are all subsets of a set with 2k−2 elements. A 2-coloring is easily
found. It follows that cd2(F )≤ n− 2k+ 2.

There is a surprising connection between the two very different coloring concepts
discussed in this section, captured by the following result:

8.2.6 THEOREM. For every set family F we have χ(KG(F ))≥ cd2(F ).

We omit the proof, which is again topological and similar to that of 8.2.2.

8.3 Sperner’s Lemma and Brouwer’s Theorem
In this section we will see how a very combinatorial statement leads to a result in
topology. We start with some terminology.

8.3.1 DEFINITION. A subset S ⊆ Rn is convex if, for all x , y ∈ S and λ ∈ R with 0 ≤ λ ≤ 1 we
have λx + (1−λ)y ∈ S.

8.3.2 DEFINITION. Given a set S, the convex hull is the smallest convex set containing all of
S.

8.3.3 DEFINITION. An n-dimensional simplex is the convex hull of n + 1 points in general
position in Rn. If x0, . . . , xn is this list of points, then the corresponding simplex is

∆(x0, . . . , xn) := {λ0 x0+ · · ·+λn xn : λ0, . . . ,λn ≥ 0, λ0+ · · ·+λn = 1}.

8.3.4 DEFINITION. The face of a simplex∆ is the convex hull of a subset of the points defining
the simplex. A vertex is a face consisting of a single point.

The main objects we will study are the following:

8.3.5 DEFINITION. A simplicial subdivision of an n-dimensional simplex S is a collection∆1, . . . ,∆k
of n-dimensional simplices, called “cells”, satisfying
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• ⋃k
i=1∆i = S;

• ∆i ∩∆ j = ; or ∆i ∩∆ j is a face of both ∆i and ∆ j for all i, j ∈ [k].

In Figure 8.3 a simplicial subdivision of a 2-simplex is shown.

0

2 1211

1

0

02

0

2
1

1 1

1

12

1

FIGURE 8.3
Simplicial subdivision of a 2-simplex. Two of the (small) simplices can
be disjoint, meet in a vertex, or have a common side. A legal coloring is

shown, as well as a rainbow cell.

8.3.6 DEFINITION. For each point v = λ0 x0 + · · ·+ λn xn, define l(v) := {i : λi > 0}. Let V
be the union of the vertices of the ∆i . A legal coloring of the simplicial subdivision is a
map c : V → {0, . . . , n} such that

c(v) ∈ l(v) for all v ∈ V.

Now we can state our combinatorial result, known as Sperner’s Lemma:

8.3.7 LEMMA (Sperner). There is a cell ∆i whose vertices all have different colors.

Such a cell will be called a rainbow cell. Figure 8.3 shows a legal coloring and a rainbow
cell.

Proof: We will prove a stronger statement: the number of rainbow cells is odd! We
will proceed by induction on the dimension n.

Case n = 1. The simplex in this case is a line segment, the simplicial subdivision is a
subdivision into shorter line segments, and a legal coloring is an assignment of zeroes
and ones to the vertices such that the leftmost vertex has color 0 and the rightmost
vertex has color 1. If we follow the line segment from left to right, we encounter an
odd number of color changes. Each color change corresponds to a rainbow cell.

Case n= 2. In principle this case can be skipped, and the argument for general n can
be followed instead. But the case gives much insight. The proof is by double counting,
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where we count the pairs (∆, e), with ∆ a cell and e an edge of ∆ that uses both color
0 and 1.
• Let X be the number of boundary edges having both color 0 and 1;
• Let Y be the number of interior edges having both color 0 and 1;

• Let Q be the number of non-rainbow cells containing an edge having both color 0
and 1;
• Let R be the number of rainbow cells (which always contain an edge having both

color 0 and 1).

Each boundary edge is in one cell; each internal edge is in two cells. Each non-rainbow
cell containing a 0− 1-edge, will have exactly two such edges. Each rainbow cell has
exactly one 0− 1-edge. It follows that

2Q+ R= X + 2Y.

From the case n= 1 we know that X is odd. But then R has to be odd too!

Case n> 2. We generalize the previous argument. We count the pairs (∆, f ), with ∆
a cell and f an (n−1)-dimensional face of ∆ that uses all of the colors {0,1, . . . , n−1}.
• Let X be the number of (n− 1)-dimensional faces on the boundary using all of

the colors {0, 1, . . . , n− 1};
• Let Y be the number of (n− 1)-dimensional faces in the interior using all of the

colors {0, 1, . . . , n− 1};
• Let Q be the number of non-rainbow cells using all of the colors {0,1, . . . , n− 1};
• Let R be the number of rainbow cells.

Again, each boundary face is in one cell; each internal face is in two cells. And again,
each rainbow cell has exactly one such face. Each non-rainbow cell has two: drop
either one of the two vertices whose color appears twice. So

2Q+ R= X + 2Y.

Now X is odd by induction (since each such face is a rainbow cell in the (n−1)-simplex
that is the boundary), and therefore R must be odd. �

Our applications of Sperner’s Lemma come from topology. The first one is a proof
of the famous Brouwer’s Fixed Point Theorem.

8.3.8 DEFINITION. The n-dimensional ball is

Bn := {x ∈ Rn : ‖x‖ ≤ 1} .

8.3.9 THEOREM (Brouwer’s Fixed Point Theorem). Let f : Bn → Bn be continuous. Then
there exists x ∈Bn with f (x) = x.

Proof: First we note that the ball Bn is homeomorphic to the simplex (i.e. there is
a continuous bijection whose inverse is again continuous). So it suffices to prove the
result for the n-dimensional simplex S := ∆(e1, . . . , en+1) ⊆ Rn+1, where ei is the ith
standard basis vector (i.e. (ei) j = 1 for i = j and 0 elsewhere). Let f : S → S be a
continuous function, and assume f has no fixed point.



8.3. SPERNER’S LEMMA AND BROUWER’S THEOREM 105

Consider a sequence S1,S2, . . . of simplicial subdivisions of S such that the length
of the longest edge in the subdivision tends to 0.

Define a coloring ci : V (Si)→ {1, . . . , n+ 1} by

ci(x) = k (8.2)

if k is the least coordinate in which f (xk)< xk. Since f (x) 6= x and

n+1∑
l=1

x l =
n+1∑
l=1

f (x)l = 1,

the index k exists, and therefore the coloring is well-defined.

8.3.9.1 CLAIM. The coloring ci is a legal coloring of the simplicial subdivision Si .

Proof: Consider a vertex v = λ1e1 + · · ·+ λn+1en+1, and recall l(v) = {i : λi > 0}.
Since f (v)i ≥ 0 for all i, the index k such that f (v)k < vk must be among the indices
in l(v), that is, ci(v) ∈ l(v). �

It follows that we have an infinite sequence ∆1,∆2, . . . of rainbow cells, with ∆i ∈
Si , such that the longest edge length tends to 0. The simplex S is closed and bounded,
so the 1-colored vertices in the ∆i have a convergent subsequence x1,1, x1,2, . . .. Let x∗

be the limit.
Now the 2-colored vertices in this subsequence converge to x∗ as well, and so do

the i-colored vertices for i ∈ {3, . . . , n+ 1}. Note that, for each i, we have

f (x i,1)i < (x i,1)i , f (x i,2)i < (x i,2)i , . . .

so f (x∗)i ≤ x∗i for all i. But f (x∗) 6= x∗, so f (x∗)i > x∗i for at least one index i, a
contradiction. �

The next application, from Pohoata (2013), is a proof for a true Borsuk theorem -
weaker than the claim from 5.4.5, yet still interesting.

8.3.10 THEOREM (Borsuk’s Theorem). Given any covering of Rn with uniformly bounded open
sets, there exist n+ 1 of these sets that have a non-trivial intersection.

Proof: Let S be an n-dimensional simplex in Rn, with main vertices v1, . . . , vn+1, whose
sides are so large that none of the open sets in the cover cut all faces of S. For each
i from {1, . . . , n+ 1}, let Ui be the union of those open sets in the cover which do not
intersect the face of S containing vi . Now, the sets

�
Ui ∩ S

	
i represent an open cover of

S. We can then find a closed cover
�

Vi
	

1≤i≤n+1 of S such that the complements Fi of the
sets Vi are contained in the Ui ’s for all 1≤ i ≤ n+1. Since Vi contains vi , but Ui does not
intersect the face of S not containing vi , Fi cuts precisely those faces of S which contain
vi . > > Now consider a triangulation of S. For each vertex of this triangulation, choose
one of the sets Fi which contain the vertex, and label the vertex with the etiquette i.
The observation made above that Fi cuts precisely those faces of S which contain vi
implies that this labelling is actually a Sperner coloring, and so the Sperner Lemma
yields that one of the elementary n-simplices simplices in the triangulation has vertices
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of different labels. Because the simplices in the triangulation can be made arbitrarily
small, the compactness of the sets Fi easily implies that

⋂n+1
i=1 Fi 6= ;. This proves the

theorem. �

Fixed-point theorems play a major role in the theory of Nash equilibria, an impor-
tant concept in game theory.

8.4 Where to go from here?
A well-written text on the combinatorial implications of the Borsuk-Ulam theorem is
• Matoušek (2003), Using the Borsuk-Ulam Theorem. Lectures on Topological Meth-

ods in Combinatorics and Geometry.



CHAPTER9
Designs

D ESIGN THEORY is the study of a family of combinatorial structures rich in sym-
metries. Designs have their origins in experiment design, a branch of statistics,
but have since found applications in other areas, such as computer science.

9.1 Definition and basic properties
We start with a generalization of the notion of set system:

9.1.1 DEFINITION. An incidence structure is a triple (P ,B , I), where
• P is a finite set; its elements are called points.
• B is a finite set; its elements are called blocks.
• I ⊆P ×B; I is called an incidence relation

Instead of writing (p, B) ∈ I we will use the shorthand p ∈ B. We say p and
B are incident. If no two blocks have the same set of incidences, we say the incidence
structure is simple. In that case we can consider the blocks as subsets ofP , and identify
the incidence structure with a set system (P ,B).

9.1.2 DEFINITION. Let v ≥ k ≥ t ≥ 0 and λ ≥ 1 be integers. A t − (v, k,λ) design (or a t-
design on v points with block size k and index λ) is an incidence structure D = (P ,B , I)
with
• |P |= v
• |B|= k for all B ∈B
• For every subset T of t points, exactly λ blocks are incident with all points of T .

The main question in design theory is the following:

9.1.3 QUESTION. For which values of the parameters do (simple, nontrivial) t − (v, k,λ) de-
signs exist?

Trivial designs are the following:

• There is one block, and it contains all points. This is a t − (v, v, 1) design for all
t ≤ v.

107
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• B is the collection of all size-k subsets. This is a t − (v, k,λ) design for all t ≤ k
and appropriate λ.

From now on, unless indicated otherwise, we will use the following

9.1.3.1 ASSUMPTION. v > k > t.

A famous design question is the following problem:

9.1.4 EXERCISE (Kirkman’s Schoolgirls). Fifteen girls walk to school each day in 5 groups of
3. Arrange a schedule so that, in a week, each pair walks side by side only once.

In our language, this asks for a 2− (15, 3,1) design, with the additional property
that the set of 45 blocks gets partitioned into seven groups of 5.

One can associate more parameters with designs. One notable parameter is the
number of blocks (45 in the example just discussed). But it turns out this number is
determined by the other parameters:

9.1.5 LEMMA. Let b be the number of blocks of a t − (v, k,λ) design. Then

b = λ
�

v

t

�Â�
k

t

�
.

Proof: Count the pairs (T, B) where B is a block and T a size-t subset contained in B
in two ways. �

We can get more detailed:

9.1.6 LEMMA. For 0 ≤ i ≤ t, let bi be the number of blocks containing a fixed size-i subset S of
points. Then

bi = λ
�

v− i

t − i

�Â�
k− i

t − i

�
.

In particular, this number does not depend on the choice of S. Hence each t − (v, k,λ)
design is also an i− (v, k, bi) design.

The number b1, the number of blocks containing a fixed element, is also called the
replication number, denoted by r. We have

9.1.7 LEMMA. For a design with t = 2 we have

bk = vr,

λ(v− 1) = r(k− 1).

An obvious necessary condition for a design to exist, is that all numbers we’ve seen
are integers. But this is not always sufficient. For instance, does a 10−(72, 16,1) design
exist? If we look at the bi , for instance by running the following code through the SAGE

computer algebra system,
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[binomial(72-i, 10-i) / binomial(16-i, 10-i) for i in range(11)]

we see that all bi are integers. But the following result still rules out the existence of a
corresponding design:

9.1.8 THEOREM (Tits). For any nontrivial t − (v, k, 1) design, we have

v ≥ (t + 1)(k− t + 1).

Proof: Note that λ = 1, so any two blocks overlap in at most t − 1 elements. Pick a
set S of t + 1 elements so that S is not contained in any block. (Exercise: why does S
exist?)

For each T ⊆ S, with |T | = t, there is a unique block BT containing T . Now BT has
k− t other elements, and since |BT ∩BT ′ |= t−1 for T ′ 6= T , T ′ ⊆ S with |T ′|= t, each
element of P \ S is in at most one set BT . Hence

v ≥ |S|+ (t + 1)(k− t) = (t + 1) + (t + 1)(k− t). �

Finally, here is a reformulation of a result we’ve seen before, namely Theorem 5.4.1.

9.1.9 THEOREM (Fisher’s Inequality). In a 2 − (v, k,λ) design with b blocks, and v > k, we
have

b ≥ v.

9.2 Some constructions
Our first design is a bit of a novelty item.

9.2.1 EXAMPLE. LetP := E(K5), the edge set of the complete graph on 5 vertices. The blocks
of the design will be the size-4 subsets of edges such that the subgraph has one of the
following shapes:

There are 5+ 10+ 15= 30 blocks. Next, consider a triple of edges. The corresponding
subgraph can take on one of the following shapes:

Note that each triple can be completed in a unique way into one of the blocks. It follows
that we have found a 3− (10,4, 1) design.
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Next we consider an infinite family. These are based on the third outcome of the De
Bruijn-Erdős Theorem (Theorem 4.5.1).

9.2.2 EXAMPLE. A projective plane of order q is a configuration of q2+q+1 points and q2+q+1
lines such that
• Every two points determine a unique line.
• Every two lines meet in a unique point.
• Every line has q+ 1 points.
• Every point is on q+ 1 lines.

If we take the lines as our blocks, this gives a 2− (q2+ q+ 1, q+ 1, 1) design.
In Problem 4.5.2 we raised the question for which values of q a projective plane

exists. The following theorem gives a sufficient condition.

9.2.3 THEOREM. For each prime power q there exists a projective plane of order q.

Proof: Consider the vector space GF(q)3. Let the points be the 1-dimensional sub-
spaces, and the lines be the 2-dimensional subspaces.

Each nonzero vector v spans a unique 1-dimensional subspace 〈v〉. This subspace
contains (0,0, 0) and all nonzero multiples of v, of which there are q−1. It follows that
there are

q3− 1

q− 1
= q2+ q+ 1

1-dimensional subspaces, i.e. points. Each pair of points spans a unique 2-dimensional
subspace; all other properties can be derived from here. �

9.3 Large values of t
We can find designs for a wide range of parameters once we allow repeated blocks:

9.3.1 THEOREM. Let t, k, v be given with t < k < v − t. If repeated blocks are allowed, then
there exists a t − (v, k,λ) design for some λ.

Proof: Let P := [v] be a set of points. Define a
�v

t

�×�v
k

�
matrix M , with rows indexed

by the size-t subsets of P and columns indexed by the size-k subsets of P , and entries

MT,K =

(
1 if T ⊆ K

0 otherwise.

Since t < k < v − t, the matrix M has more columns than rows, so the columns are
linearly dependent over Q. That is, we can find coefficients αK , not all zero, such that

∑
K⊆P :|K |=k

αK MT,K = 0

for all T ⊆ P with |T | = t. Possibly after scaling we may assume αK ∈ Z for all K . Let
d be an integer such that αK + d ≥ 0 for all K , and αK + d = 0 for some K . Consider
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FIGURE 9.1
An STS(7) and an STS(9).

the incidence structure D = (P ,B , I) in which each block K is repeated αK + d times.
We claim that this is the desired design.

To see this, pick any subset T of size t, and count the number of blocks containing
T . This is

∑
K

MT,K(αK + d) =
∑

K

MT,K d = d
�

v− t

k− t

�
d.

Clearly this number does not depend on our choice of T , so D is a t − (v, k, d
�v−t

k−t

�
)

design. �

A more difficult question is for which values of t designs exist without repeated
blocks. A result by Teirlinck shows that we can still find designs for all values of t, but
the parameters v and k can no longer be chosen freely, and will in fact be very large
relative to t.

If, in addition, we demand that λ = 1, then our knowledge shrinks dramatically.
We know of a finite number of designs with t ≥ 4, and of no designs with t > 6.

9.4 Steiner Triple Systems
For at least one class of designs, the existence problem has been settled completely (but
not the uniqueness problem!). In this section we will look at those designs.

9.4.1 DEFINITION. A Steiner triple system of order v (denoted STS(v)) is a 2−(v, 3, 1) design.

In Figure 9.1 two small Steiner triple systems are shown. We will show the follow-
ing:

9.4.2 THEOREM. There exists an STS(v) if and only if v = 0 or v ≡ 1 (mod 6) or v ≡ 3
(mod 6).

Proof of necessity: Necessity follows easily from Lemma 9.1.7: we have

3b = vr

v− 1= 2r.
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Since r is an integer, the second equation implies that v is odd, i.e. v ≡ 1,3, or 5
(mod 6). Substituting the second equation in the first gives

b =
v(v− 1)

6
,

and it is easily checked that v = 6x + 5 doesn’t work. �

To prove sufficiency, we need to construct designs. Our first construction is the
following:

9.4.3 LEMMA. Let n= 2m+ 1 and P := Zn×Z3. Consider the setB consisting of
• All triples of the form {(x , 0), (x , 1), (x , 2)} for x ∈ Zn;
• All triples of the form {(x , i), (y, i), (z, i + 1)} for x , y, z ∈ Zn such that x 6= y and

2z = x + y, and for all i ∈ Z3.
Then (P ,B) is an STS(3n) = STS(6m+ 3).

Sketch of proof: Note that, for fixed x , y , there is a unique value of z with x + y = 2z.
This is because 2 has a multiplicative inverse in Zn. It follows that the number of blocks
is

n+ 3
�

n

2

�
=

3n(3n− 1)
6

,

as expected. We leave it as an exercise to show that each pair of points is in a unique
block. �

While direct constructions for STS(6m + 1) also exist, we will instead look at a
recursive construction, building new designs by gluing together smaller ones.

9.4.4 DEFINITION. If D = (P ,B) is a Steiner Triple System, and P ′ ⊆ P is such that any
triple fromB with two points in P ′ is fully contained in P ′, then we say (P ′,B ′) is a
subsystem, whereB ′ is the restriction ofB to those sets fully contained in P ′.

9.4.5 THEOREM. Let D be an STS(v) having an STS(u) subsystem. Let D′ be an STS(w). Then
there exists an STS(u+w(v− u)).

If w > 0 then this new system has D as a subsystem.
If 0< u< v and w > 1 then the new system may be chosen such that it has an STS(7)

subsystem.

Proof: Label the points of D as P = {a1, . . . , au}∪{bi : i ∈ Zm}, where {a1, . . . , au} are
the points of the subsystem, and m= v− u. Label the points of D′ as {1, . . . , w}.

We construct our new design as follows: take w disjoint copies of D. Identify
the points {a1, . . . , au} and add new blocks according to D′. Figure 9.2 illustrates the
process. We now give the construction in detail.

Define the set of points Q := {a1, . . . , au} ∪ {dp,i : p = 1, . . . , w; i ∈ Zm}. We define
w maps from the design D to the “pages” of the new construction:

ϕp :P →Q, defined by ϕp(ai) = ai and ϕp(bi) = dp,i .
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a1

au

D
D
D
D

FIGURE 9.2
Gluing together Steiner Triple Systems

The blocks of the new design are of two kinds. First, there are the blocks of D,
copied to each page:

ϕ1(B)∪ · · · ∪ϕw(B).

Second, there are all triples of the form {dp1,i1 , dp2,i2 , dp3,i3} such that
• {p1, p2, p3} is a block of D′;
• i1+ i2+ i3 ≡ 0 (mod m).

Again, we leave it as an exercise that each pair is in a unique triple.
The second claim in the theorem is obvious from the construction: any page is

isomorphic to the original D.
For the last claim, pick any a ∈ P ′. Note that m = v − u is even and nonzero.

Number the bi such that {a, b0, bm/2} is a triple of D. Label the elements of D′ such
that {1,2, 3} is a triple of D′. Then it can be checked that the newly constructed design
contains a configuration as illustrated in Figure 9.3. �

To prove Theorem 9.4.2, we need to check that the construction suffices to create
Steiner Triple systems of all desired orders. This is a bit of a puzzle, of which we omit
the details. Note that, in addition to the Steiner triple systems already discussed, we
also need an STS(13).

9.5 A different construction: Hadamard matrices
We take a short detour into another family of highly regular mathematical structures:
Hadamard matrices. These matrices were named in honor of Hadamard, who proved
the following theorem:

9.5.1 THEOREM. Let A be an n× n real matrix with |ai j| ≤ 1 for all i, j ∈ [n]. Then |det(A)| ≤
nn/2. Equality holds if and only if
• ai j =±1 for all i, j ∈ [n], and
• AAT = nI.
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a

d1,0

d1, m
2

d2, m
2

d2,0

d3, m
2

d3,0

FIGURE 9.3
An STS(7) as subsystem of the recursive construction.

Sketch of proof: We use a geometric interpretation of the determinant. Let P be the
parallelepiped in Rn whose sides are defined by the rows of A. Then vol(P) = |det(A)|.
See Figure 9.4 for an example where n = 2. Note that ‖ai‖ ≤

p
n, and vol(P) ≤∏n

i=1 ‖ai‖ ≤ (
p

n)n. For equality to hold in the theorem, we must therefore have
• ‖ai‖=

p
n;

• 〈ai , a j〉= 0, i.e. the vectors are pairwise orthogonal.
These conditions yield the desired result. �

a1

a2

P

FIGURE 9.4
Relation between determinant and parallelepiped volume



9.5. A DIFFERENT CONSTRUCTION: HADAMARD MATRICES 115

9.5.2 DEFINITION. An n× n matrix A= (ai j) is a Hadamard matrix if

ai j =±1 for all i, j ∈ [n];
AAT = nI .

The main question, as usual, is whether Hadamard matrices exist. It is not hard to
find the first few examples:

�
1
�

,

�
1 1
1 −1

�
.

For n= 3, we get that 〈ai , a j〉=±1±1±1 which is never 0. Generalizing this argument
leads us to conclude that n had better be even if n> 1. But we can do a little better:

9.5.3 THEOREM. If a Hadamard matrix of order n exists, then n= 1, 2, or n≡ 0 (mod 4).

Proof: Consider a Hadamard matrix A with at least three rows. We can do a number of
things to A without changing its properties. Notably we can swap rows, swap columns,
and multiply rows and columns by −1 (check this!). Hence we can assume that the first
three rows look like this (we denote entries equal to 1 by a + and equal to −1 by a −):

a︷ ︸︸ ︷
+ · · ·+

b︷ ︸︸ ︷
+ · · ·+

c︷ ︸︸ ︷
+ · · ·+

d︷ ︸︸ ︷
+ · · ·+

+ · · ·+ + · · ·+ −· · ·− −· · ·−
+ · · ·+ −· · ·− + · · ·+ −· · ·−

where a, b, c, d denote the number of columns of each kind. Since the inner product
between each pair needs to be 0, we derive the following relations:

a+ b = c+ d

a+ c = b+ d

a+ d = b+ c

a+ b+c+ d = n,

and we conclude that a = b = c = d = n/4, from which the result follows. �

The major open problem in this area is the following:

9.5.4 CONJECTURE. If n≡ 0 (mod 4), then there exists an n× n Hadamard matrix.

For n≤ 1000, the conjecture has verified for all orders but 668,716, 892.
Hadamard matrices have many attractive properties showing a high degree of bal-

ance or regularity. We give one example.

9.5.5 THEOREM. The absolute value of the sum of the entries of any a× b submatrix of an n×n
Hadamard matrix does not exceed

p
abn.

Proof: Let D be an a×b submatrix of the n×n Hadamard matrix A. By permuting rows
and columns we may as well assume that D consists of the first a rows and b columns.
Let α be the sum of the entries of D.
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Define v1, . . . , va to be the first a rows of A, and let y := v1 + · · ·+ va. Let x be a
vector of length n whose first b entries are 1 and whose remaining n− b entries are 0.
Then α= 〈x , y〉, and so

α2 = 〈x , y〉2 ≤ ‖x‖2 · ‖y‖2 = b‖y‖2 = b
a∑

i=1

〈vi , vi〉= abn. �

9.5.1 Constructions

We will look at two constructions. The first builds new Hadamard matrices out of old
through the tensor product: given matrices A= (ai j) and B, define

A⊗ B :=




a11B · · · a1nB
...

...
an1B · · · annB


 .

9.5.6 LEMMA. If A and B are Hadamard matrices, then so is A⊗ B.

Sketch of proof: Let A be n× n and B be m×m. Using some easy to verify properties
of the tensor product, we see

(A⊗ B)(A⊗ B)T = AAT ⊗ BBT = nIn⊗mIm = nmInm. �

By starting with a 2 × 2 Hadamard matrix, we conclude that there exist Hadamard
matrices for all n= 2k, k ∈ N. These are called Hadamard matrices of Sylvester type.

Our second example relies on some basic number theory.

9.5.7 THEOREM. Suppose q ≡ −1 (mod 4) is a prime power. Let P(q) = (pi j) be a (q + 1)×
(q+ 1) matrix with rows and columns indexed by GF(q)∪ {∞}, and entries

pi j =





+1 if i =∞ or j =∞
−1 if i = j 6=∞
+1 if i− j is nonzero square in GF(q)
−1 if i− j is nonzero non-square in GF(q).

Then P(q) is a Hadamard matrix.

Sketch of proof: Define the following function (also known as the Legendre symbol):

χ(x) :=





0 if x = 0

1 if x is nonzero square

−1 if x is nonzero non-square.

Note that each finite field GF(q) is cyclic: there is a generator g ∈ GF(q) such that
x = g r for some r ∈ {0, . . . , q− 2}, for all x ∈ GF(q) \ {0}. Since exactly half the values
of r are even, exactly half the nonzero elements of GF(q) are squares. Moreover, we
have χ(x y) = χ(x)χ(y).
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9.5.7.1 CLAIM. If c 6= 0, then we have
∑

b∈GF(q)

χ(b)χ(b+ c) =−1.

Proof: To see this, write, for b 6= 0, χ(b + c) = χ(b)χ(1 + cb−1). The sum now
becomes

∑
b 6=0

χ(b)2χ(1+ cb−1).

It is clear that 1+ cb−1 takes on all nonzero values but 1 (just look at the inverses).
The result follows since exactly half the nonzero values get mapped to −1. �

Now consider the inner product between two of the rows (where we assume neither
row is indexed by∞, which is an easy case anyway):

〈pi , pk〉=
∑

j∈GF(q)∪∞
pi j pk j = 1+

∑
j∈GF(q)

χ(i− j)χ(k− j).

The result now follows by an easy substitution. �

9.5.2 Designs from Hadamard matrices

The reason we introduced Hadamard matrices, aside from their intrinsic interest, is to
create some more designs.

9.5.8 EXAMPLE. Let A be a Hadamard matrix of order 4k, scaled so the first row and first
column have only positive entries. Delete the first row and column. Let P be the set
of remaining rows, B the set of remaining columns, and set p ∈ B if ApB = +1. If we
pick any pair of rows and carry out the sorting argument from the proof of Theorem
9.5.3, we see that they have exactly k− 1 positive entries in common. Hence we have
constructed a 2− (4k− 1,2k− 1, k− 1) design.

9.5.9 EXERCISE. Use a similar technique to find a 3− (4k, 2k, k− 1) design.

9.6 Where to go from here?
Design theory is a vast subject. A good place to get started is
• http://www.designtheory.org/

and in particular the bibliography at
• http://designtheory.org/library/encyc/biblio/

http://www.designtheory.org/
http://designtheory.org/library/encyc/biblio/




CHAPTER10
Coding Theory

E RROR-correcting codes are one of the hidden success stories of mathematics.
They enable reliable communication over noisy channels (which include air-
waves). The Mars explorers use them to send us their pictures, CD players use

them to compensate for scratches, and your cell phone uses them to send your voice to
the receiving party.

10.1 Codes
The key to error correction is to introduce redundancy to the signal. We do this as
follows.

10.1.1 DEFINITION. Let S be a finite set, and n ≥ 0 an integer. A code C is a subset of Sn, the
collection of n-tuples from S.

The elements of C are called codewords. We usually think of them as row vectors. A
typical choice for S is a finite field GF(q), with GF(2) = {0,1} being the most common.
We define a metric on Sn:

10.1.2 DEFINITION. The Hamming distance between x , y ∈ Sn is

d(x , y) := |{i : x i 6= yi}|.

It’s easy to check the following properties (the second one is the triangle inequality):

10.1.3 LEMMA. For all x , y, z ∈ Sn we have
• d(x , y) = d(y, x), and
• d(x , y) + d(y, z)≥ d(x , z).

The idea behind error correction is the following:
• The sender transmits an element c ∈ C;
• The receiver receives an element y ∈ Sn;
• The receiver finds the element c∗ ∈ C such that d(c∗, y) is minimized, and as-

sumes that c∗ was the submitted codeword.

119
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In order for this to work (at least most of the time), we must ensure that, with high
probability, c∗ = c. In most situations it is likelier that few coordinates have changed,
than that many coordinates have changed. Hence a useful measure for this probability
is the number of errors that can still be corrected.

10.1.4 LEMMA. If d :=minx ,y∈C d(x , y)≥ 2e+ 1, then up to e errors can be corrected.

Proof: Suppose not. Then there exist y ∈ Sn and x , z ∈ C such that d(x , y) ≤ e and
d(z, y)≤ e. But then

2e+ 1≤ d(x , z)≤ d(x , y) + d(y, z)≤ 2e,

a contradiction. �

When communicating, each transmission has a cost, so we want to convey as much
information as possible. This means that we look for codes with a large number of
codewords. Clearly this goal clashes with the goal of achieving a large minimum dis-
tance. We consider three bounds on the size of a code with minimum distance d, a
lower bound and two upper bounds.

10.1.5 THEOREM. Let S be a finite set with q elements. There exists a code C over Sn with
minimum distance d and

|C | ≥ qn

Â d−1∑
i=0

�
n

i

�
(q− 1)i

!
.

Proof: Suppose |C | = k, and fix some c ∈ C . The number of elements of Sn having
distance less than d to a codeword is

∑d−1
i=0

�n
i

�
(q− 1)i . Clearly C can contain none of

these points except c itself. But as long as k ·∑d−1
i=0

�n
i

�
(q−1)i < qn, there is an element

c′ ∈ Sn that can be added to C while keeping the minimum distance at least d. �

In other words, we are trying to cover Sn with spheres of radius d − 1.

10.1.6 THEOREM (Hamming bound). Let S be a finite set with q elements. There exists an e-
error correcting code C over Sn with

|C | ≤ qn

Â e∑
i=0

�
n

i

�
(q− 1)i

!
.

Proof: The number of elements of Sn having distance at most e to a codeword x is∑e
i=0

�n
i

�
(q− 1)i . Note that each element in that neighborhood can have distance ≤ e

to at most one codeword, otherwise the code is not e-error correcting. Hence these
neighborhoods need to be disjoint, and the result follows. �

In other words, we are trying to pack spheres of radius e in Sn. A code attaining the
bound is called a perfect code.

10.1.7 THEOREM (Singleton bound). With the same setup as before, |C | ≤ qn−d+1.
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Proof: Pick d−1 coordinates and delete them from all codewords. The resulting words
are still all different, since the minimum distance is at least d. Clearly there are at most
qn−(d−1) possible words left. �

A code attaining the Singleton bound is called a Maximum-distance separable (MDS)
code.

10.2 Linear codes
In this section we study an important class of codes with extra structure. This structure
opens the way to more advanced analysis, and to efficient encoding/decoding algo-
rithms.

10.2.1 DEFINITION. A code C is linear if S = GF(q) is a finite field, and for all x , y ∈ C and
α ∈ GF(q) we have

x + y ∈ C

αx ∈ C .

In other words, C is a linear subspace of GF(q)n. If dim(C) = k then we say C is a q-ary
[n, k, d] code. The fraction k/n is the code rate.

10.2.2 DEFINITION. The weight of a codeword x , denoted by wt(x), is the number of nonzero
coordinates. In other words,

wt(x) = d(x , 0).

Since d(x , y) = d(x − y, 0), we have the following:

10.2.3 LEMMA. If C is a linear code, then d =minx∈C wt(x).

With each linear code we can associate a second code:

10.2.4 DEFINITION. If C is a q-ary linear [n, k, d] code, then the dual code is

C⊥ := {u ∈ GF(q)n : 〈u, v〉= 0 for all v ∈ C}.

Note that C⊥ is the orthogonal complement of the linear subspace C , and therefore it
is a linear [n, n− k, d ′] code for some d ′.

Since linear codes are linear subspaces, they are fully specified by a basis:

10.2.5 DEFINITION. Let C be a q-ary linear [n, k, d] code. A generator matrix for C is a k× n
matrix G such that C = rowspan(G). A generator matrix H for C⊥ is called a (parity)
check matrix of G.

The name “parity check” derives from the fact that c is a codeword in C if and only
if cHT = 0. Given matrices G and H, the encoding/decoding process now looks as
follows:
Encoding: Given x ∈ GF(q)k, compute and send c := xG.
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Decoding: On receiving y ∈ GF(q)n, compute the syndrome yHT . This is zero if and
only if y is a codeword. What happens next depends on how cleverly G and H
were constructed, and falls beyond the scope of this course.

The check matrix of a code can help with determining the minimum distance:

10.2.6 THEOREM. A linear code C with check matrix H has minimum weight at least d if and
only if any d − 1 columns of H are linearly independent.

Proof: Suppose there is a set of d − 1 linearly dependent columns. This implies there
is a word c with wt(c)≤ d−1 such that cHT = 0. Hence the minimum distance of C is
at most wt(c)≤ d − 1. The converse follows by reversing the argument. �

10.2.1 Hamming codes

Let us look at an example.

10.2.7 DEFINITION. Take all vectors in GF(q)r , but remove multiples of previously chosen vec-

tors. This gives a r ×
�

qr−1
q−1

�
matrix H. The code C with check matrix H is called a

Hamming code.

10.2.8 THEOREM. A Hamming code over GF(q) has parameters [n, n− r, 3], where n= qr−1
q−1

.

Proof: The first two parameters follow directly from duality; the third follows since
any two columns in H are linearly independent. �

10.2.9 THEOREM. Hamming codes are perfect, 1-error-correcting codes.

Proof: We already know Hamming codes are 1-error-correcting; let us show they are
perfect. This follows almost immediately:

|C |= qn−r =
qn

qr =
qn

1+ n(q− 1)
. �

10.2.2 MDS codes

Next, let us take a closer look at MDS codes. Linear MDS codes have the following
relationship between their parameters:

10.2.10 LEMMA. If C is a q-ary linear [n, k, d] code, then k = n− d + 1, and d = n− k+ 1.

Proof: |C |= qk = qn−d+1. �

The dual of a linear MDS code is again an MDS code, as is shown by the following
result:

10.2.11 THEOREM. Let C be a q-ary linear [n, k, d] code with generator matrix G = [Ik D] and
check matrix H = [−DT In−k], such that d = n− k+ 1. The following are equivalent:

(i) C is an MDS code;
(ii) Every d − 1(= n− k) columns of H are linearly independent;
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(iii) Every square submatrix of D is nonsingular;
(iv) Every k columns of G are linearly independent;
(v) C⊥ is an MDS code.

Proof: The fact (i) ⇒ (ii) is Theorem 10.2.6. From (ii) it follows that every (n −
k)× (n− k) submatrix of H is nonsingular. Every submatrix of D can be augmented
to an (n − k) × (n − k) matrix using columns from the identity submatrix of H, and
the determinant of that augmented matrix is ± the determinant of the submatrix of
D. Hence (iii) follows from (ii). From there (iv) can be readily deduced, and using
Theorem 10.2.6 we conclude that (v) holds.

The reverse implications follow by swapping C and C⊥. �

The main question surrounding MDS codes, and in fact one of the major open
problems in coding theory, is the following:

10.2.12 QUESTION. Given k, what is the largest n such that there is a q-ary [n, k, d] linear MDS
code?

Let us start by considering an example of a construction. The main ingredient is the
following:

10.2.13 DEFINITION. A Vandermonde matrix is an n× n matrix of the form

Vn =




1 1 · · · 1
x1 x2 · · · xn
x2

1 x2
2 · · · x2

n
...

...
...

xn−1
1 xn−1

2 · · · xn−1
n




.

Without proof we state the following:

10.2.14 LEMMA. If Vn is a Vandermonde matrix, then

det(Vn) =
∏

1≤i< j≤n

(x j − x i).

Note that this formula is valid over any field, and for any x1, . . . , xn from that field. This
is a really beautiful result that comes to aid in very surprising contexts. Before passing
to our construction, we make a detour with an example from elementary number theory
that is connected with the determinants from Section ?

10.2.15 EXAMPLE. For any sequence of positive integers (an)n≥1, we have that
∏

1≤i< j≤n ( j− i)
divides

∏
1≤i< j≤n (a j − ai).

In other words, the product ∏
1≤i< j≤n

a j − ai

j− i

is an integer. In this form, the result reminds of the Vandermonde determinant, namely
Lemma 10.2.14.
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Sketch of proof: By Lemma 10.2.14, we can write that

∏
1≤i< j≤n

a j − ai

j− i
=

1

1! · 2! · . . . (n− 1)!
· det(V ),

where

V =




1 1 · · · 1
a1 a2 · · · an
a2

1 a2
2 · · · a2

n
...

...
...

an−1
1 an−1

2 · · · an−1
n




.

Elementary row operations then lead to

1

1! · 2! · . . . (n− 1)!
· det




1 1 · · · 1
a1 a2 · · · an
a2

1 a2
2 · · · a2

n
...

...
...

an−1
1 an−1

2 · · · an−1
n



= det




1 · · · 1�a1
1

� · · · �an
1

�
...

...� a1
n−1

� · · · � an
n−1

�




,

which proves that ∏
1≤i< j≤n

a j − ai

j− i

is an integer, since the latter determinant is an integer (all entries are integers). �

We return to our construction.

10.2.16 DEFINITION. Suppose q is a prime power and k ≤ q. The q-ary Reed-Solomon code is
the linear code with generator matrix




1 1 · · · 1 0
x1 x2 · · · xq 0
x2

1 x2
2 · · · x2

q 0
...

...
...

...
xk−1

1 xk−1
2 · · · xk−1

q 1




,

where x1, . . . , xq are the q distinct elements of GF(q).

10.2.17 THEOREM. The Reed-Solomon code is an MDS code.

Proof: It follows easily from Lemma 10.2.14 that the determinant of every k× k sub-
matrix is nonzero, and hence that the corresponding k columns are independent. This
is condition 10.2.11(iv). �

It is conjectured that this construction is, in fact, almost always best possible:

10.2.18 CONJECTURE (MDS Conjecture). Let q be a prime power, and k ≤ q an integer. A q-ary
linear [n, k, d]MDS code has n≤ q+1, except if q = 2h for some h≥ 1, and k ∈ {3, q−1}.
In those cases n≤ q+ 2.
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This conjecture was almost completely open for decades, but not too long ago a
major step was made:

10.2.19 THEOREM (Ball 2011). The MDS Conjecture holds if q is a prime number.

10.3 The weight enumerator
We return to the theme from Chapter 2 and collect some information about codes
in polynomials. There are some differences: these are actual, finite polynomials (as
opposed to generating functions).

10.3.1 DEFINITION. The weight enumerator of a code C is

WC(x , y) :=
∑
c∈C

xwt(c) yn−wt(c).

Equivalently, if ni denotes the number of codewords of weight i, then

WC(x , y) =
n∑

i=0

ni x
i yn−i .

The weight enumerator carries a lot of information about the code (and arguably the
key information), and it is invariant under permutations of the columns and scaling of
the columns. For those, and many other, reasons coding theorists often use the weight
enumerator in their studies of codes. A particularly important result is the following:

10.3.2 THEOREM (MacWilliams relations). Let C be a q-ary, linear code. Then

WC⊥(x , y) = q−kWC(y − x , y + (q− 1)x).

While it is clear that the dual code is determined uniquely by the code itself, it is
still surprising to see such a clean relationship between the two weight enumerators.
We will see a proof of this equation in the next chapter, where it will be deduced as a
special case of a much more general result.

10.3.1 Application: the nonexistence of certain projective planes

To see the power of the MacWilliams relations, let us look at an application. We will
prove the following result, restricting the number of open cases in Problem 4.5.2:

10.3.3 THEOREM. There exists no projective plane of order 6 (mod 8).

Our proof follows a short paper by Assmus and Maher (1978). That paper also
shows the nonexistence of certain so-called biplanes. Some terminology: a t − (v, k,λ)
design is symmetric if the number of blocks equals the number of points (i.e. equality
holds in Fisher’s Inequality). The incidence matrix of the design is a matrix A with rows
indexed by blocks, columns by points, and

Ai j =

(
1 if point j is in block i

0 otherwise.
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Note that the incidence matrix of a symmetric design is not necessarily symmetric! The
term “symmetric” only implies that the matrix is square.

By looking at AAT we can deduce the following two lemmas:

10.3.4 LEMMA. In a symmetric 2− (v, k,λ) design we have b = v and k = r. Every two blocks
intersect in precisely λ points. Also,

k(k− 1) = (v− 1)λ.

10.3.5 LEMMA. Let A be the incidence matrix of a symmetric 2− (v, k,λ) design. Then det(A) =
k(k−λ)(v−1)/2.

We will use the following linear algebra result, which is a special case of the Smith
Normal Form:

10.3.6 THEOREM. Let A be an n× n nonsingular matrix over Z. There exist integer matrices M
and N such that det(M) = det(N) = 1 and MAN = D, where D is a diagonal matrix with
diagonal entries d1, . . . , dn such that di|di+1 for all i ∈ [n− 1].

Next, consider the matrix A+, obtained from A by adding an all-ones column. We
interpret A+ as a matrix over GF(2).

10.3.7 LEMMA. Let A be the incidence matrix of a symmetric 2 − (v, k,λ) design, let A+ be as
above, and let C be the linear code generated by the rows of A. If k is odd, k− λ is even,
but k−λ is not a multiple of 4, then C is a (v+1, (v+1)/2, d) code for some d, such that
C = C⊥.

Proof: Let M , N be as in Theorem 10.3.6. Then d1d2 · · · dn = det(MAN) = det(A) =
k(k − λ)(v−1)/2. Note that k is odd, and each term (k − λ) has exactly one factor 2.
Hence no more than (v− 1)/2 of the diagonal entries are divisible by 2, and dim(C) =
rk(A+)≥ rkGF(2)(A)≥ rkGF(2)(MAN)≥ (v+ 1)/2.

Next, let a and b be rows of A+. Then 〈a, a〉 = k + λ ≡ 0 (mod 2). Also, 〈a, b〉 =
λ+ 1 ≡ 0 (mod 2). It follows that C ⊆ C⊥. Since dim(C) + dim(C⊥) = v + 1, we have
that dim(C)≤ (v+ 1)/2. Hence equality must hold, and the result follows. �

Call a code doubly even if all weights are multiples of 4.

10.3.8 LEMMA. If C is a binary, linear [v+1, (v+1)/2, d] code that is doubly even, and C⊥ = C,
then 8|(v + 1).

Proof: For a binary code, the MacWilliams relations specialize to

WC⊥(x , y) = 2−kWC(y − x , y + x) = 2n/2−kWC((x , y)σ),

where σ is the linear transformation

1p
2

�
−1 1
1 1

�
.
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If C is self-dual, then then WC(x , y) is invariant under σ. If C is doubly even, then
WC(x , y) is also invariant under

π=

�
i 0
0 1

�
,

where i ∈ C is such that i2 =−1. But now WC(x , y) must be invariant under the group
generated by π and σ, and in particular under

(πσ)3 =
1+ ip

2

�
1 0
0 1

�
,

which multiplies each of x and y by a primitive eighth root of unity. The result follows.�

Proof of Theorem 10.3.3: Suppose a projective plane of order q ≡ 6 (mod 8) exists.
Consider the corresponding 2 − (q2 + q + 1, q + 1, 1) design. Let A be its incidence
matrix, and C the binary, linear code of A+ as above. By Lemma 10.3.7, C is self-dual.
Each row of C has q+2 nonzero entries, and in particular weight 0 (mod 4). By Lemma
10.3.8, then, v+1= q2+q+2 is divisible by 8, which contradicts that q ≡ 6 (mod 8).�

The weight enumerator also played a crucial role in establishing the nonexistence
of a projective plane of order 10, by reducing the number of cases to be checked by a
computer to a manageable level. The most general result establishing nonexistence of
projective planes is

10.3.9 THEOREM (Bruck-Ryser-Chowla). If a projective plane of order q exists, and q ≡ 1 or 2
(mod 4), then q is the sum of two squares.

10.4 Where to go from here?
The literature on coding theory is immense. Here are a few pointers.

• Lam (1991), The Search for a Finite Projective Plane of Order 10 recounts the
resolution of the existence of a projective plane of order 10 (spoiler: it doesn’t
exist). The MacWilliams relations play a key part, as does an extensive computer
search.
• MacWilliams and Sloane (1977), The Theory of Error-Correcting Codes is a classical

textbook on coding theory.
• Welsh (1988), Codes and Cryptography is more accessible.
• van Lint (1998), Introduction to Coding Theory is an excellent textbook too.





CHAPTER11
Matroid theory

1 935 was the year in which the word “matroid” was first printed. It was a time
when building an axiomatic foundation of mathematics was a popular pursuit.
Whitney (1935), in his paper On the abstract properties of linear dependence, at-

tempts just that: try to capture linear independence using a few simple axioms. Whit-
ney’s axioms capture a much broader class of structures, though, with many interesting
properties. Matroid theory was born. Today the subject thrives, having deep links to
graph theory, coding theory, and finite geometry.

11.1 Matroids
Let us start with the definition.

11.1.1 DEFINITION. A matroid is a pair (E, r), where E is a finite set and r : P (E) → Z a
function satisfying the following:

(i) (Monotonicity) For all A⊆ B ⊆ E then r(A)≤ r(B).
(ii) (Submodularity) For all A, B ⊆ E,

r(A) + r(B)≥ r(A∪ B) + r(A∩ B). (11.1)

(iii) (Unit increase) For all A⊆ E, 0≤ r(A)≤ |A|.

Any function satisfying (i) — (iii) is called a rank function. Let us look at two examples.
In fact, these examples are what motivated Whitney to write his paper.

11.1.2 EXAMPLE. Let E be a finite set of vectors in a vector space V . Let r(A) := dim(span(A))
for each A⊆ E. Then (E, r) is a matroid.

Proof: It is easy to verify (i) and (iii). For submodularity, we use the following relation
for subspaces U , W of a vector space V :

dim(U) + dim(W ) = dim(U +W ) + dim(U ∩W ).

Taking U := span(A) and W := span(B), we see that U +W = span(A∪ B). However,
although A∩ B ⊆ U ∩W , the dimension of span(A∩ B) can be strictly smaller than
dim(U ∩W ). In fact, the intersection of the subspaces can be large while the finite sets
A and B are disjoint! Still, this suffices to conclude submodularity. �
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11.1.3 EXAMPLE. Let G = (V, E) be a graph. For an edge subset A⊆ E, let c(A) be the number
of components of the subgraph (V, A). Define r(A) := c(A). Then (E, r) is a matroid,
called the cycle matroid of G.

Proof: This result is easiest proven through a detour. Consider the V × E incidence
matrix A of G (as we did in Lemma 5.6.3). Let r1 be the rank function of the previous
example, where E is now the set of columns of A. We will show that r1 = r.

Consider a set A ⊆ E. Let F be a maximal spanning forest contained in A. Each
edge connects two components, so c(F) = |V | − |F |. By Lemma 5.6.4, the vectors
corresponding to F are linearly independent, so r1(F) = |F |= |V | − (|V | − |F |) = r(F).

Next, we add the remaining edges from A one by one. Each e ∈ A closes a cycle
when added to F (by maximality of |F |), so each e is linearly dependent on F (again by
Lemma 5.6.4), so r1(A) = r1(F) and r(A) = r(F), completing the proof. �

Some more terminology:

11.1.4 DEFINITION. Let M = (E, r) be a matroid. A set A⊆ E is independent if r(A) = |A|. A set
A⊆ E is spanning if r(A) = r(E).

A striking feature of matroids is that there are many different characterizations.
They can be defined in terms of any of the following, and more besides. In each case
there is a list of two to four simple axioms.

• Independent sets
• Inclusionwise maximal independent sets (called bases)
• Inclusionwise minimal dependent sets (called circuits)
• Closures (the closure of a set A is the inclusionwise maximal set B such that A⊆ B

and r(A) = r(B))
• Hyperplanes (closed sets of rank r(E)− 1).

The following lemmas can be proven without difficulty from the axioms:

11.1.5 LEMMA. Let M = (E, r) be a matroid. All maximal independent subsets of E have size
r(E).

11.1.6 LEMMA. Let M = (E, r) be a matroid. max{|A| : A independent}=min{|A| : A spanning}.

11.1.1 Duality

With each matroid we associated a new matroid, its dual, as follows.

11.1.7 DEFINITION. The dual matroid of M = (E, r) is M∗ = (E, r∗), where

r∗(A) = |A|+ r(E \ A)− r(E).

11.1.8 THEOREM. M∗ is a matroid.

Proof: We have to show that r∗ obeys the rank axioms. We denote A := E \ A and, for
a function f , we write f (A) := f (A).

11.1.8.1 CLAIM. If f is a submodular function, then so is f .



11.1. MATROIDS 131

Proof:

f (A) + f (B) = f (A) + f (B)≥ f (A∩ B) + f (A∪ B)

= f (A∪ B) + f (A∩ B) = f (A∪ B) + f (A∩ B). �

It is easy to check that | · | is a submodular function, as is the (constant) function −r(E).
Summing submodular functions gives a submodular function, so |A| + r(A) − r(E) is
submodular.

Next, let A⊆ B ⊆ E. Then

r(A) = r(B ∪ (B \ A))≤ r(B) + r(B \ A)≤ r(B) + |B \ A|,
where the inequality follows from submodularity, and the last equality from 11.1.1(iii).
It follows that

r(A) + |A| ≤ r(B) + |B \ A|+ |A|= r(B) + |B|,
and hence r∗ satisfies monotonicity.

Finally, note that submodularity implies r(E) ≤ r(A) + r(A), so 0 ≤ r(E)− r(A) ≤
r(A)≤ |A|. Hence

r∗(A) = |A| − (r(E)− r(A))

satisfies 11.1.1(iii) too. �

It is easy to check the following properties:

11.1.9 THEOREM. Let M = (E, r) be a matroid. The following are true:
(i) B is a basis of M if and only if E \ B is a basis of M∗.

(ii) (M∗)∗ = M.
(iii) r∗(E) = |E| − r(E).

11.1.10 EXAMPLE. Let M be the cycle matroid of a graph G, which we assume to be connected.
We wish to describe the dependent sets of M∗. Such an edge set F cannot be contained
in the complement of any spanning tree, since the complement of a spanning tree is a
basis of M∗. Hence F meets every spanning tree, i.e. F is an edge cut: G\F has more
components than G. The minimal dependent sets of M∗ are the minimal edge cuts.
These are sometimes called bonds, and M∗ is known as the bond matroid of G.

Note that there are deep connections with planar graph duality.

11.1.2 Minors

A key concept in matroid theory is that of a minor. The definition takes three steps:

11.1.11 DEFINITION. Let M = (E, r) be a matroid and e ∈ E. We define M\e := (E \ {e}, r). We
say M\e was obtained from M by deleting e.

11.1.12 DEFINITION. Let M = (E, r) be a matroid and e ∈ E. We define M/e := (E \ {e}, r ′),
where

r ′(A) := r(A∪ {e})− r({e}).
We say M/e was obtained from M by contracting e.
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11.1.13 DEFINITION. Let M be a matroid. We say N is a minor of M if N can be obtained by
repeatedly deleting and/or contracting elements from M .

Matroid minors generalize graph minors. It is easy to see that deleting an element
corresponds to deleting an edge. Contraction specializes to the following:

11.1.14 EXAMPLE. Let G = (V, E, ι) be a multigraph, and e ∈ E, not a loop, with endpoints
u, v. The graph G/e is (V ′, E \ {e}, ι′), where V ′ := V \ {u, v} ∪ {uv}, and ι′(uv, f ) =
min{ι(u, f ) + ι(v, f ), 1}, and ι′(w, f ) = ι(w, f ) for all f ∈ E \ {e} and w ∈ V ′ \ {uv}. In
words: we delete e and identify the endpoints. See Figure 11.1.

u v
e

uv
→

FIGURE 11.1
Contraction of an edge

We skip the proof of the following:

11.1.15 LEMMA. If M is the cycle matroid of G, and e is a non-loop edge of G, then M/e is the
cycle matroid of G/e.

11.2 The Tutte polynomial
Before presenting the main theory of this section, let us consider a few examples. The
main theme will be deletion-contraction formulas. Our first example is our favorite
pastime: counting trees.

11.2.1 PROPOSITION. Let G = (V, E,ϕ) be a connected graph, and let τ(G) denote the number of
spanning trees of G. If e ∈ E then

τ(G) =




τ(G\e) if e is a loop

τ(G/e) if e is a cut-edge

τ(G\e) +τ(G/e) otherwise.

Proof: We observe that τ(G) is the number of trees using edge e plus the number of
trees not using e. It is easily checked that each tree of G/e corresponds to exactly one
tree of G using e. Hence, if e is not a loop, then τ(G/e) is the number of spanning trees
using e. The result now follows easily. �

Next up, colorings.

11.2.2 DEFINITION. The chromatic polynomial P(G, t) is the number of proper colorings of G
with t colors.
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For instance, P((V,;), t) = t |V |, and P(Kn, t) = t(t−1) · · · (t−n+1). We call P(G, t)
a polynomial, but is it always?

11.2.3 PROPOSITION. P(G, t) is indeed a polynomial in t.

Proof: We will show that P(G, t) satisfies the following recursion. Let e ∈ E(G).

P(G, t) =

(
0 if G contains a loop

P(G\e, t)− P(G/e, t) otherwise.

From this it is clear that P(G, t) is a polynomial.
Clearly if G has a loop, then any coloring will have an edge whose endpoints re-

ceive the same color. Otherwise, consider the proper colorings of G\e. Those come in
two types: ones where the endpoints of e receive different colors (those correspond to
proper colorings of G) and ones where the endpoints of e receive the same color (those
do not correspond to proper colorings of G). But the latter are in a 1-to-1 correspon-
dence with colorings of G/e. �

Our third example concerns connectivity when edges may randomly disappear:

11.2.4 DEFINITION. The reliability polynomial C(G, p) is the probability that, if each edge is in-
dependently deleted with probability p, then the remaining graph has the same number
of components as G.

11.2.5 THEOREM. C(G, p) is a polynomial in p.

Proof: Again we prove a recursion. Let e ∈ E(G).

C(G, p) =





C(G\e, p) if e is a loop

(1− p)C(G/e, p) if e is a cut-edge

pC(G\e, p) + (1− p)C(G/e, p) otherwise.

The loop case is clear; the rest is easily deduced by using conditional probability:

Pr(G survives) =Pr(e survives)Pr(G survives|e survives)+

Pr(e dies)Pr(G survives|e dies). �

All examples have a similar recurrence relation, because all examples above are
evaluations of a more generic polynomial, the rank polynomial. We define it for ma-
troids:

11.2.6 DEFINITION. Let M = (E, r) be a matroid, and let r∗ denote the rank function of M∗.
The rank polynomial of M is

R(M ; x , y) :=
∑
A⊆E

x r(E)−r(A) y r∗(E)−r∗(E\A).

The following facts are easily checked:
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11.2.7 LEMMA.

R(M ; x , y) = R(M∗; y, x), (11.2)

R(M ; x , y) =
∑
A⊆E

x r(E)−r(A) y |A|−r(A), (11.3)

R(M ; x , y) =
∑
A⊆E

x |E\A|−r∗(E\A) y r∗(E)−r∗(E\A). (11.4)

Equation (11.3) shows that R(M ; x , y) is something like a generating function for the
number of sets of size i and rank j, but with remapped exponents. The rank polynomial
satisfies a recurrence relation:

11.2.8 THEOREM. Let M = (E, r) be a matroid, and let e ∈ E. Then

R(M ; x , y) =




(1+ y)R(M\e; x , y) if r(e) = 0

(1+ x)R(M/e; x , y) if r∗(e) = 0

R(M\e; x , y) + R(M/e; x , y) otherwise.

Proof: We split the sum up into the terms containing e and the terms not containing
e. If r(e) = 0 (the technical term is “e is a loop”), then r(A∪ {e}) = r(A) for all sets A.
Looking at (11.3), the only effect of adding e to a set is to increase |A|, and therefore
an extra factor y is obtained. The first case follows.

The second case follows by duality, using (11.2) and the first case.
For the third case, it is an easy exercise in using the rank axioms to conclude that

r(E \ {e}) = r(E) (and hence r∗(E \ {e}) = r∗(E)). The sets not containing e contribute
the following to the sum:

∑
A⊆E\{e}

x r(E)−r(A) y |A|−r(A) = R(M\e; x , y).

The sets containing e contribute the following to the sum, using (11.4) and (11.2):
∑

A⊆E:e∈A

x |E\A|−r∗(E\A) y r∗(E)−r∗(E\A) = R(M∗\e; y, x) = R(M/e; x , y).

The result follows. �

Our main result in this section is the following:

11.2.9 THEOREM. For each matroid M = (E, r), and each e ∈ E, let f (M ; x , y) be given by

f (M ; x , y) =





a(1+ y) f (M\e; x , y) if r(e) = 0

b(1+ x) f (M/e; x , y) if r∗(e) = 0

a f (M\e; x , y) + b f (M/e; x , y) otherwise.

If, moreover, f (;; x , y) = 1, then

f (M ; x , y) = a|E|−r(E)br(E)R(M ; x , y).
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We will omit the proof, which is a not too difficult exercise in bookkeeping.

11.2.10 PROPOSITION. Let G = (V, E, ι) be a graph with n vertices, m edges, and c components,
and let M be the corresponding cycle matroid. Then the following hold:

τ(G) = R(M ; 0, 0) (provided G is connected);

P(G, t) = (−1)n−c t cR(M ;−t,−1);

C(G, p) = (1− p)n−c pm−n+cR
�

M ; 0,
1− p

p

�
.

Sketch of proof: The first equation is a simple substitution, coupled with the observa-
tion that bases correspond to sets with |A| = r(A) = r(E). Hence the contribution of a
basis is 0000 = 1, whereas the contribution of any other set is 0.

For the second, apply Theorem 11.2.9 to t−c P(G, t). We need to figure out the
relation in case e is a cut-edge. Consider a partition (H1, H2) of V (G) such that e is
the only edge having one end u in H1 and one end v in H2. Let ci be the number of
colorings of H1 with t colors, such that u has color i, and let c′i be the corresponding
number for H2. Since there is symmetry between the colors, we have ci = c and c′i = c′

for some c, c′ and for all i ∈ [t]. Now

P(G\e, t) =
∏

i, j∈[t]
cic
′
j = t2cc′

P(G/e, t) =
∏
i∈[t]

cic
′
i = tcc′.

Hence P(G\e, t) = tP(G/e, t). Now if we plug t−c P(G, t) into Theorem 11.2.9, we find

a(1+ y) = 0

b(1+ x) = t − 1

a = 1

b =−1,

from which the result follows.
The third equation is proven similarly, and left as an exercise. �

The rank polynomial has many other connections, such as the Ising and Potts mod-
els in statistical mechanics, the Jones polynomial in knot theory, and, indeed, the weight
enumerator we saw in the last chapter.

One question remains: what is the Tutte polynomial from the section title?

11.2.11 DEFINITION. The Tutte polynomial of a matroid is

T (M ; x , y) := R(M ; x − 1, y − 1).

Tutte defined his polynomial in a different way, and it took a number of years before
people realized that it was so closely related to the rank polynomial.

11.2.1 Proof of the MacWilliams Relations

All proofs in this section are left as exercises.
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Let C be a q-ary linear [n, k, d] code with generator matrix G. Let M be the vector
matroid (cf. Example 11.1.2) whose elements are the columns of G. Note that M does
not change when we do row operations on G. Therefore M depends only on the code
C , and we can write M = M(C). The next result shows that linear code duality is a
special case of matroid duality:

11.2.12 THEOREM. M(C)∗ = M(C⊥).

Deletion and contraction can be defined for codes too:

11.2.13 DEFINITION. We say the punctured code at coordinate i, denoted C \ i, is the code ob-
tained from C by removing the ith coordinate from each word.

11.2.14 THEOREM. M(C\i) = M(C)\i.

11.2.15 DEFINITION. We say the shortened code at coordinate i, denoted C/i, is the code ob-
tained from C by restricting the code to those words having a 0 in the ith coordinate,
and then removing the ith coordinate from each remaining word.

11.2.16 THEOREM. M(C/i) = M(C)/i.

Now to prove the MacWilliams relations, we need to show that the weight enumera-
tor WC(x , y) is determined by the rank polynomial R(M(C); x ′, y ′) and use R(M∗; y ′, x ′) =
R(M ; x ′, y ′).

11.3 Where to go from here?
We have seen only one aspect of matroids. The following books have more:

• Oxley (2011), Matroid Theory, is the standard textbook. It is thorough but acces-
sible with many examples and many exercises. However, this chapter is instead
based on the treatment from
• Godsil and Royle (2001), Algebraic Graph Theory, since the book by Oxley does

not discuss the Tutte polynomial.
• Welsh (1976), Matroid Theory, was the first textbook on matroid theory. It is

available as a low-cost reprint, and valuable since it contains a number of results
that Oxley omitted from his text.



APPENDIX A
Graph theory

Graph theory is a cornerstone of combinatorics. Not only are there an abundance of
beautiful results and intriguing open problems, but there are also countless practical
applications. While these lecture notes do not center on graph theory, still many results
and examples involve graphs. This appendix gives an overview of the basic concepts.
Many results are stated as problems. The proofs are typically not difficult, and can
be useful exercises. The content of this appendix is, in part, inspired by Schrijver (ca.
2000).

A.1 Graphs and multigraphs
In these lecture notes we will use the following definition:

A.1.1 DEFINITION. A graph G is a pair (V, E), where V is a finite set, and E is a collection of
size-2 subsets of V .

The members of V are called vertices, the members of E edges. If e = {u, v} is an
edge, then u and v are the endpoints. We say u and v are adjacent, and that u and v
are incident with e. One can think of a graph as a network with set of nodes V . The
edges then denote which nodes are connected. Graphs are often visualized by drawing
the vertices as points in the plane, and the edges as lines connecting two points.

A.1.2 PROBLEM. Determine the number of graphs with V = [n].

A.1.3 DEFINITION. The degree of a vertex v, denoted deg(v), is the number of edges having v
as endpoint. A vertex of degree 0 is called isolated.

A.1.4 PROBLEM. Prove that every graph has an even number of odd-degree vertices.

A.1.5 DEFINITION. A graph is k-regular if all vertices have degree k, and regular if it is k-
regular for some k. A 3-regular graph is sometimes called cubic.

A.1.6 PROBLEM. How many edges does a k-regular graph on n vertices have?

A.1.7 PROBLEM. Determine the number of cubic graphs with V = [6].
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a

bc

d

FIGURE A.1
The graph G = (V, E), where V = {a, b, c, d}, and

E = {{a, b}, {a, c}, {a, d}, {b, d}, {c, d}}.

A.1.8 DEFINITION. A complete graph on n vertices is a graph with |V | = n, such that all pairs
of vertices are connected. We denote this graph by Kn (leaving the set V implicit).

A.1.9 PROBLEM. Show that G is a complete graph if and only if G is (n− 1)-regular.

A.1.10 DEFINITION. A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets
U , W such that, for each e ∈ E we have e = {u, w} for some u ∈ U , w ∈ W . The sets
U , W are sometimes called the color classes.

FIGURE A.2
A bipartite graph with |U |= 3 and |W |= 4.

A.1.11 DEFINITION. A complete bipartite graph Km,n is a bipartite graph with color classes U
and W , where |U |= m, |W |= n, and with edge set E = {{u, w} : u ∈ U , w ∈W}.

A.1.12 PROBLEM.
(i) How many edges does Km,n have?

(ii) For which values of m, n is Km,n regular?
(iii) How many bipartite graphs are there with V = [n]?

Sometimes we need a more general structure than Definition A.1.1.

A.1.13 DEFINITION. A multigraph is a triple (V, E, ι), where V and E are finite sets, and ι :
V × E → {0, 1} a function such that, for each e ∈ E, we have ι(v, e) = 1 for either one
or two members v ∈ V .
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The advantage of multigraphs is that they can contain loops (edges whose endpoints
are identical) and multiple edges (two or more edges sharing the same endpoints).
Figure A.3 shows the multigraph in which ι(v, e) is given by the (v, e) entry of the
following matrix:




1 2 3 4 5 6 7

a 1 1 1 1 0 0 1
b 1 0 0 0 1 0 0
c 0 1 0 0 0 1 0
d 0 0 1 1 1 1 0


 (A.1)

a

bc

d

12

3 4

56

7

FIGURE A.3
The multigraph G = (V, E, ι) with V = {a, b, c, d}, E = {1,2, 3,4, 5},

and ι as defined by matrix (A.1)

Multiple edges are also referred to as parallel edges. Two loops can be in parallel
too. A loop contributes 2 to the degree of a vertex.

Note. Many authors refer to an object as defined in Definition A.1.13 as a graph. An
object as in Definition A.1.1 is then called a simple graph.

A.2 Complement, subgraphs, *morphisms
A.2.1 DEFINITION. Let G = (V, E) be a graph, and let K = (V, F) be the complete graph on

vertex set V . Then the complement of G is the graph G := (V, F \ E).

We will see the complement again when we discuss coloring.

A.2.2 DEFINITION. Let G = (V, E) be a graph. A graph G′ = (V ′, E′) is a subgraph of G if
V ′ ⊆ V and E′ ⊆ E. We say G′ is an induced subgraph if, whenever u, v ∈ V ′ and
{u, v} ∈ E, then {u, v} ∈ E′.

Typically, homomorphisms are maps that preserve a certain property. Graph homo-
morphisms preserve connectivity between vertices:
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A.2.3 DEFINITION. Let G = (V, E) and H = (W, F) be graphs. A graph homomorphism is a
map ϕ : V →W such that, for all {u, v} ∈ E, we have {ϕ(u),ϕ(v) ∈ F}.

A.2.4 DEFINITION. A graph homomorphism ϕ is an isomorphism if it is a bijection between
the two vertex sets, and its inverse is also a homomorphism. An automorphism is an
isomorphism between G and itself.

A.2.5 PROBLEM. Determine the automorphism groups of the following graphs:
(i) The graph in Figure A.1

(ii) The unique cubic graph on 10 vertices, such that every two nonadjacent vertices
have a common neighbor.
Hint: This graph is usually called the Petersen graph. Determining its automor-
phism group is somewhat tedious. Use of a computer could help.

Note that vertices of graphs always have labels, even if these are omitted in a draw-
ing. If we are interested in structures within the graph irrespective of labels, we can
say that we want them “up to isomorphism” or “up to relabeling”.

A.3 Walks, paths, cycles
A.3.1 DEFINITION. Let G = (V, E, ι) be a multigraph. A walk is a sequence (v0, e0, v1, e1, . . . ,

vn−1, en−1, vn), where v0, . . . , vn ∈ V , and e0, . . . , en−1 ∈ E, and ei has endpoints vi , vi+1
for i = 0, . . . , n− 1.

The length of a walk is the number of edges in it.

A.3.2 DEFINITION. Let G = (V, E, ι) be a multigraph, and W = (v0, e0, . . . , en−1, vn) a walk of
G. We say that

(i) W is a path if no vertex occurs twice;
(ii) W is a closed walk if v0 = vn;

(iii) W is a cycle if v0 = vn, and no other vertex occurs twice.

A.3.3 PROBLEM. How many paths are there in the complete graph on 4 vertices? How many
cycles? How many of each up to isomorphism?

We will often be imprecise and refer to either the sequence (e0, . . . , en−1) or the
sequence (v0, . . . , vn) as the walk. For (simple) graphs, no information is lost.

A.3.4 PROBLEM. Show that, if there is a walk from v0 to vn, then there is also a path from v0
to vn.

A.3.5 PROBLEM. (i) Show that, if each vertex in a graph has degree at least k, then the
graph contains a path of length k.

(ii) Show that, if each vertex in a nonempty graph has degree at least 2, then the
graph contains a cycle.

A cycle of length 3 is often called a triangle.
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A.4 Connectivity, components
A.4.1 DEFINITION. We say two vertices u, v are connected if there exists a walk starting in u

and ending in v. The length of a shortest such walk is the distance between u and v.

A.4.2 DEFINITION. A graph is connected if every two vertices are connected.

A.4.3 PROBLEM.
(i) Show that, for each n, there exists a connected n-vertex graph with n− 1 edges.

(ii) Show that each connected, n-vertex graph has at least n− 1 edges.
(iii) Show that, for each n, there exists a disconnected, n-vertex graph having 1

2
(n−

1)(n− 2) edges.
(iv) Show that every disconnected, n-vertex graph has at most 1

2
(n− 1)(n− 2) edges.

A.4.4 DEFINITION. A component of G is an inclusionwise maximal connected subgraph. That
is: if G′ is connected, and G′ is a subgraph of a connected graph G′′, then G′ = G′′.

A.4.5 PROBLEM. Prove the following:
(i) If C1 = (V1, E1) and C2 = (V2, E2) are distinct components of a graph, then V1 ∩

V2 = ;.
(ii) Each vertex is contained in exactly one component.

(iii) Vertices u and v belong to the same component of G if and only if there is a path
from u to v.

(iv) G = (V, E) has at least |V | − |E| components.
(v) If G has exactly two vertices of odd degree, then there is a path between them.

A.4.6 DEFINITION. An Euler-tour is a closed walk that uses each edge exactly once. A graph
is Eulerian if it has an Euler-tour.

The following is, perhaps, the oldest result in graph theory:

A.4.7 THEOREM (Euler, 1736). A graph G = (V, E) without isolated vertices is Eulerian if and
only if it is connected and all degrees are even.

Proof: First, assume G is an Eulerian graph, with Euler tour (v0, e0, . . . , en−1, vn). Pick
vertices u and w. Let i be the first index such that vi ∈ {u, w}, and let j > i be such that
v j ∈ {u, w} \ {vi}. Then (vi , ei , . . . , v j−1, e j , v j) is a path from u to w. It follows that G is
connected. Pick a vertex v. Let i1, . . . , ik be the indices such that vi j

= v for all j ∈ [k].
First suppose i1 > 0. Then ik < n, since v0 = vn (the tour is closed). Since each edge
occurs exactly once in the tour, the edges ei1−1, . . . , eik+1 are distinct (since G is simple,
by assumption), and these are all edges incident with v. It follows that deg(v) = 2k. If
i1 = 0 then a similar argument shows deg(v) = 2k− 2.

Suppose the converse does not hold. Let G be a connected graph without isolated
vertices, with all degrees even, but with no Euler-tour. Suppose that, among all such
graphs, G was chosen to have as few edges as possible. Let W = (v0, e0, . . . , en−1, vn) be
a closed walk of maximum length that uses each edge at most once, and let H be the
graph obtained from G by removing the edges of W . Since W meets each vertex in an
even number of edges, H has all degrees even. This graph may have isolated vertices,
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but since W does not cover all edges of G, at least one component C of H contains an
edge. Pick C such that C has at least one vertex in common with W (Exercise: Why
does such C exist?) Every degree of C is even, and C is connected, so by induction
C has an Euler tour (w0, f0, . . . , fk−1, wk). We can let the tours start in such a way
that vn = w0. But then (v0, e0, . . . , en−1, vn, f0, w1, . . . , fk−1, wk) is another closed walk
without repeated edges, and this tour is longer than W , a contradiction our choice of
W as a maximum-length walk. �

A.5 Forests, trees
A.5.1 DEFINITION. A forest is a graph without cycles. A tree is a connected forest.

A.5.2 PROBLEM. Prove the following:
(i) Between every two vertices of a tree there is exactly one path.

(ii) Every tree with at least two vertices, has at least two vertices of degree 1.
(iii) Every tree with a vertex of degree k, has at least k vertices of degree 1.
(iv) Every tree with exactly 2 vertices of degree 1, is a path.
(v) Every tree with n vertices has exactly n− 1 edges.

(vi) Every forest with k components has exactly n− k edges.

A.5.3 DEFINITION. Let G = (V, E) be a connected graph. A subgraph T = (V, F) is a spanning
tree if T is a connected graph and a tree.

A.5.4 PROBLEM. Let T1 and T2 be distinct spanning trees of the connected graph G. Show
that, for every edge e ∈ E(T1) \ E(T2), there is an edge f ∈ E(T2) \ E(T1) such that the
subgraph obtained from T2 by adding e and removing f is again a spanning tree.

A.6 Matchings, stable sets, colorings
Below, we say that an edge covers a vertex v if one of its ends equals v. Conversely, a
vertex v covers an edge if it covers one of the ends of that edge.

A.6.1 DEFINITION. Let G = (V, E) be a graph.
(i) A vertex cover is a subset U ⊆ V such that each edge is covered by at least one

vertex of U . The minimum size of a vertex cover is denoted by τ(G).
(ii) An edge cover is a subset F ⊆ E such that each vertex is covered by at least one

edge of F . The minimum size of an edge cover is denoted by ρ(G).

A.6.2 DEFINITION. Let G = (V, E) be a graph.
(i) A matching is a subset M ⊆ E such that no vertex is incident with more than one

edge in M . A matching is perfect if it covers all vertices. The maximum size of a
matching is denoted by ν(G).

(ii) A stable set (sometimes called independent set) is a subset U ⊆ V such that no
edge has both ends in U . The maximum size of a stable set is denoted by α(G).

A.6.3 PROBLEM. Show that α(G)≤ ρ(G) and ν(G)≤ τ(G).
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The following result is harder to prove:

A.6.4 THEOREM (Gallai’s Theorem). Let G = (V, E) be a graph without isolated vertices. Then

α(G) +τ(G) = |V |= ν(G) +ρ(G).

A.6.5 DEFINITION. A (vertex) coloring of G = (V, E) with k colors is a map c : V → [k]. A
coloring is proper if, for each e ∈ E, e = {u, v}, we have c(u) 6= c(v). The least k for
which G has a proper k-coloring is denoted by χ(G), the chromatic number of G.

Note that we may assume implicitly that a coloring is proper.

A.6.6 PROBLEM. Let ∆(G) denote the maximum degree of G. Show that χ(G)≤∆(G) + 1.

A.6.7 PROBLEM. Show that χ(G)≥ α(G), where G denotes the complement of G.

A.6.8 PROBLEM. What is the connection between proper k-colorings of G and homomor-
phisms G→ Kk?

We can also color edges:

A.6.9 DEFINITION. An edge-coloring of G = (V, E) with k colors is a map c : E → [k]. An
edge-coloring is proper if, for each v ∈ V , and for every pair e, f of edges incident with
v, c(e) 6= c( f ).

The edge coloring number χ ′(G) is defined analogously to χ(G).

A.6.10 PROBLEM. Let G = (V, E) be a graph with maximum degree ∆(G). Show that χ ′(G) ≥
∆(G).

The following is harder to prove, and possibly the hardest theorem quoted in this
section:

A.6.11 THEOREM (Vizing’s Theorem). Every graph has an edge coloring with at most ∆(G) + 1
colors.

A.7 Planar graphs, minors

A.7.1 DEFINITION. A graph is planar if it can be drawn in the plane so that no two edges cross
(and they can meet only in their endpoints).

There is a rich theory of planar graphs, which is beyond the scope of these notes.

A.7.2 DEFINITION. Let G = (V, E, ι) be a multigraph, and let e ∈ E be an edge of G with
endpoints u, v. We say that H is obtained from G by contracting edge e if H = (V ′, E′, ι′)
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with V ′ = (V \ {u, v})∪ {uv}, E′ = E \ {e}, and

ι′(x , f ) =





1 if x = uv and ι(u, f ) = 1 or ι(v, f ) = 1
0 if x = uv and ι(u, f ) = ι(v, f ) = 0
ι(x , f ) otherwise.

This is denoted by H = G/e.

In other words, we delete the edge e and identify its endpoints. Deleting an edge is
denoted by H = G\e.

A.7.3 DEFINITION. A graph H is a minor of G if H can be obtained from G by a series of edge
deletions, edge contractions, and deletions of isolated vertices.

A.7.4 PROBLEM. Show that, if G is a planar multigraph, and H is a minor of G, then H is a
planar graph.

A.7.5 PROBLEM (Euler’s Formula.). Consider a drawing of a planar (multi)graph. We call
such a drawing a plane embedding. If we remove this plane embedding from the plane,
the plane is cut up into a number of connected parts, called faces.

Let G = (V, E) be a planar graph, and let F be the set of faces of a fixed embedding
of G. Show that

|V | − |E|+ |F |= 2.

A.7.6 PROBLEM. Show that, if G is a simple planar graph with at least one cycle, then |E| ≤
3|V | − 6. Conclude that K5 is not a planar graph.

The following is Wagner’s reformulation of Kuratowski’s Theorem, which character-
izes planar graphs:

A.7.7 THEOREM (Kuratowski). A multigraph G is planar if and only if it does not contain any
of K5 and K3,3 as a minor.

A.8 Directed graphs, hypergraphs
A.8.1 DEFINITION. A directed graph or digraph is a pair D = (V, A), where V is a finite set, and

A⊆ V × V a set of ordered pairs of vertices, called the arcs. If (u, v) is an arc, then u is
the tail and v is the head.

A directed graph is often represented by using arrows for the arcs, pointing from tail to
head. A directed graph can have loops, and between each pair of vertices two arcs can
be placed, one in each direction. See Figure A.4. One can define a directed multigraph
analogously.

A.8.2 DEFINITION. A tournament is a digraph D = (V, A) such that, for every pair u, v of
vertices, exactly one of (u, v) and (v, u) is in A.
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a

bc

d

FIGURE A.4
A digraph D = (V, A) with V = {a, b, c, d} and

A= {(a, c), (a, d), (b, a), (c, c), (d, a), (d, b), (d, c)}

One can define indegree and outdegree in obvious ways, as well as directed walks,
paths, and cycles.

A.8.3 DEFINITION. A hypergraph is a pair (V, E), with E a collection of subsets of V . A hyper-
graph is k-uniform if |X |= k for all X ∈ E.
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