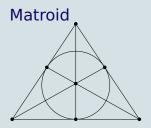


A Stroll through Partial Fields

Stefan van Zwam Diamant Symposium, 29 november 2007

Matroid representation



- Finite set of "elements"
- Every subset is either dependent or independent

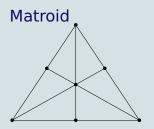
Representation

```
\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}
```

- Set of vectors (matrix columns)
- ► Linear dependence

Example is representable over \mathbb{F} if and only if $\chi(\mathbb{F}) = 2$.

Matroid representation



- Finite set of "elements"
- Every subset is either dependent or independent

Representation

```
\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}
```

- Set of vectors (matrix columns)
- ► Linear dependence

Example is representable over \mathbb{F} if and only if $\chi(\mathbb{F}) \neq 2$.

Sets of fields

Today: given a representation over some fields, are there more?

Prototypical result:

Theorem (Tutte 1965)

Let M be a matroid. The following are equivalent:

- ▶ M is representable over both GF(2) and GF(3)
- ightharpoonup M is representable over $\mathbb R$ by a totally unimodular matrix
- M is representable over every field

Totally unimodular matrices

$$\begin{bmatrix} -1 & 1 & 0 & 0 & 1 \\ 1 & -1 & 1 & 0 & 0 \\ \hline 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 \\ 1 & 0 & 0 & 1 & -1 \end{bmatrix}$$

Every square submatrix has determinant in $\{0$

Totally unimodular matrices

$$\begin{bmatrix} -1 & 1 & 0 & 0 & 1 \\ 1 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 \\ 1 & 0 & 0 & 1 & -1 \end{bmatrix}$$

Every square submatrix has determinant in {0, 1

Totally unimodular matrices

$$\begin{bmatrix} -1 & 1 & 0 & 0 & 1 \\ 1 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 \\ 1 & 0 & 0 & 1 & -1 \end{bmatrix}$$

Every square submatrix has determinant in $\{0, 1, -1\}$.

Determinants of submatrices

Note: if there is a representation of a matroid, then there is one of the form [I|D].

$$\left[\begin{array}{c|ccc|ccc|ccc|ccc|ccc|} \mathbf{1} & 0 & 0 & 0 & -1 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1 & \mathbf{0} & -1 \\ 0 & 0 & 1 & 0 & 0 & \mathbf{1} & \mathbf{1} \\ 0 & 0 & 0 & \mathbf{1} & 1 & 0 & 1 \end{array}\right]$$

 \Rightarrow If $[I|D_1]$, $[I|D_2]$ represent the same matroid, then D_1, D_2 have same determinant structure.

Theorem (Tutte 1965)

Let M be a matroid. The following are equivalent:

- 1. M is representable over both GF(2) and GF(3)
- 2. M is representable over $\mathbb R$ by a totally unimodular matrix
- 3. M is representable over every field

Main step: $(1) \Rightarrow (2)$.

Ternary matroids

- $\sqrt[6]{1}$: every determinant in $\{0\} \cup \{x \in \mathbb{C} \mid x^6 = 1\}$.
- ▶ *Dyadic:* every determinant in $\{0\} \cup \{\pm 2^i \mid i \in \mathbb{Z}\}$.
- ► Near-regular: every determinant in $\{0\} \cup \{\pm \alpha^i (\alpha 1)^j \mid i, j \in \mathbb{Z}\}.$

Theorem (Whittle 1994, 1997)

- ▶ $GF(3) \times GF(4)$ -representable $\Leftrightarrow \sqrt[6]{1}$.
- ▶ $GF(3) \times GF(5)$ -representable \Leftrightarrow dyadic \Leftrightarrow representable over GF(p) for all odd primes.
- ► $GF(3) \times GF(4) \times GF(5)$ -representable \Leftrightarrow near-regular \Leftrightarrow representable over all fields with ≥ 3 elements.

Golden Mean matroids

Consider

$$\{0\} \cup \{\pm r^i \mid i \in \mathbb{Z}\}$$

where $r = \frac{1}{2}(1 + \sqrt{5})$, i.e. a root of $r^2 - r - 1$. These are the units of the *ring of integers* \mathbb{O} of $\mathbb{Q}(\sqrt{5})$.

Theorem (Vertigan (unpublished); vZ,Pendavingh 2007) Let M be a matroid. The following are equivalent:

- 1. M is representable over both GF(4) and GF(5)
- 2. M is representable over \mathbb{R} by a Golden Mean matrix.
- 3. M is representable over all GF(p) where p is 0 or a quadratic residue mod 5.

Main difficulty: $(1) \Rightarrow (2)$.

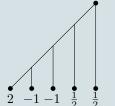
Partial field axioms (Semple and Whittle 1996)

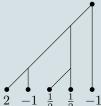
Partial field: structure $(\mathbb{P}, +, \cdot, 0, 1)$ satisfying

- 1. $\mathbb{P} \{0\}$ is an abelian group under \cdot .
- 2. For all p, p + 0 = p.
- 3. For all p, there is a (-p) such that p + (-p) = 0.
- 4. For all p, q, if p + q defined, then q + p defined and p + q = q + p.
- 5. For all p, q, r: p(q+r) defined $\Leftrightarrow pq + pr$ is defined. Then p(q+r) = pq + pr.
- 6. The associative law holds for +.

The associative law

Want: sums of more than 2 elements (determinant computations!)





P-matrices

A is a \mathbb{P} -matrix if it is a matrix over \mathbb{P} such that, for every k, for every $k \times k$ submatrix C,

$$\det(C) := \sum_{\sigma} \operatorname{sgn}(\sigma) c_{1\sigma(1)} c_{2\sigma(2)} \cdots c_{k\sigma(k)}$$

is defined.

<u>TU/e</u>

Sources of partial fields

▶ Let G be the units of a commutative ring O. Then

$$(\mathbb{G} \cup \{0\}, +, \cdot, 0, 1)$$

is a partial field. Notation: $\mathbb{P}(\mathbb{O})$.

▶ Let \mathbb{G} be a multiplicative subgroup of a partial field, with $-1 \in \mathbb{G}$. Then

$$(\mathbb{G} \cup \{0\}, +, \cdot, 0, 1)$$

is a partial field.

Examples of partial fields

- ightharpoonup Regular, dyadic, $\sqrt[6]{1}$, near-regular, golden mean
- $ightharpoonup \mathbb{P}(\mathbb{F}_1 \times \cdots \times \mathbb{F}_k)$

Lemma

A matroid M is representable over all of $\mathbb{F}_1, \ldots, \mathbb{F}_k$ if and only if it is representable over

$$\mathbb{P}(\mathbb{F}_1 \times \cdots \times \mathbb{F}_k).$$

 \Rightarrow proving our theorems reduces to comparing partial fields.

Partial field homomorphisms

Definition

 $\varphi: \mathbb{P}_1 \to \mathbb{P}_2$ is a partial field homomorphism if

- ▶ If p + q is defined, then $\varphi(p) + \varphi(q)$ is defined and equal to $\varphi(p + q)$.
- φ is nontrivial if $\varphi(1) \neq 0$.

Theorem (Semple and Whittle, 1996)

If A is a \mathbb{P}_1 -matrix and φ is nontrivial, then $\varphi(A)$ is a \mathbb{P}_2 -matrix; for a submatrix C we have

$$det(C) = 0 \Leftrightarrow det(\varphi(C)) = 0.$$

Homomorphisms: applications

Theorem (Summary)

- ▶ $\mathbb{P}(\mathsf{GF}(2) \times \mathsf{GF}(3))$ -representable \Leftrightarrow regular.
- ▶ $\mathbb{P}(GF(3) \times GF(4))$ -representable $\Leftrightarrow \sqrt[6]{1}$.
- ▶ $\mathbb{P}(\mathsf{GF}(3) \times \mathsf{GF}(5))$ -representable \Leftrightarrow dyadic.
- ▶ $\mathbb{P}(GF(3) \times GF(4) \times GF(5))$ -representable \Leftrightarrow near-regular.
- ▶ $\mathbb{P}(\mathsf{GF}(4) \times \mathsf{GF}(5))$ -representable \Leftrightarrow golden mean.

Proof.

- ► Use homomorphism for \Leftarrow of all five, and \Rightarrow of first two.
- ► Other implications: lot of (matroid-theoretic) work.

What partial fields really are

Theorem (Vertigan (unpublished); vZ, 2007)

Every partial field can be obtained from a multiplicative subgroup of the units of some ring.

Note: partial field homomorphisms do not extend to ring homomorphisms!

Where to go from here?

Conjecture

A matroid M is representable over any field with $\geq k$ elements \Leftrightarrow it is representable over all fields GF(g) with $k \leq q \leq n_k$.

Generalizes "regular" and "near-regular". Need: the right "big" partial field.

Question

Can every (interesting) partial field be obtained from the units of an integral domain?

Quest

Find other nice partial fields!

The end

Thank you.