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• How to find (all) representations of “combinatorial
geometries”.

The topic for today
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A matroid is a pair (E,B), where E is a finite set and
B a collection of subsets of E, the bases, satisfying
the axioms

(i) B is nonempty;

(ii) If B1, B2 ∈ B, and  ∈ B1 \ B2, then there exists a
y ∈ B2 \ B1 such that (B1 \ ) ∪ y ∈ B.

Example: E is a set of vectors in some vector space.
Note that not all matroids arise in this way!

What is a matroid?
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If A is r × E matrix over field F, then M(A) = (E,B) is
matroid with E = {columns of A} and B = {maximal
linearly independent sets}. M(A) invariant under

(i) Swapping columns and labels

(ii) Row operations

(iii) Column scaling

Standard representation: some basis forms identity
matrix.
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Note: 1-1 correspondence between square subma-
trices of A and r × r submatrices of [|A].
Notation: suppose X′ ⊆ X, Y′ ⊆ Y. Then A[X′, Y′] is
restriction of A to rows X′, columns Y′. If Z ⊆ X ∪ Y
then A[Z] = A[X \ Z, Y ∩ Z].
Now a set Z ⊆ X ∪ Y is a basis of M([|A]) if and only
if |Z| = r and det(A[Z]) 6= 0.

Standard representation
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Move between standard representations by pivoting
on a nonzero entry:

A =
�

y Y′

  b
X′ c D

�

→
�

 Y′

y −1 −1b
X′ −−1c D− −1cb

�

= Ay.

In matrix [|A] this is row reduction followed by col-
umn exchange.

Pivots
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Choose basis X. A is an X × Y rep. matrix over F.

• Positions of zeroes are fixed.

• G(A) is bipartite graph with vertex classes X, Y.
y ∈ E(G) if and only if Ay 6= 0.

• Suppose edges 1y1, . . . , kyk form spanning for-
est of G(A). Let θ1, . . . , θk ∈ F∗. Can scale rows
and columns so that Ay = θ for all .

• A is normalized if, for some spanning forest T,
Ay = 1 for all y ∈ T.
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M = (X ∪ Y,B); X basis. AM,X = (j) X × Y matrix;
j unknowns. For each B ∈ B an unknown B. Ring
Z[{j} ∪ {B}]. Construct ideal :

• If (X \ ) ∪ j 6∈ B then j ∈ ;
• T spanning forest of G(A). If j ∈ T then j − 1 ∈ ;
• Z ⊆ X ∪ Y, |Z| = r. If Z 6∈ B then det(AM,X[Z]) ∈ ;
• Z ⊆ X∪Y, |Z| = r. If Z ∈ B then det(AM,X[Z])Z−1 ∈
.

BM := Z[{j} ∪ {B}]/ .

(Fenton 1984, mostly)

Universal representation
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Theorem 1. If A is an X× Y matrix over field F such
that M = M([|A]), and A is T-normalized, then there
is a ring homomorphism φ : BM→ F such that

φ(AM,X) = A.

Theorem 2. BM does not depend on choice of X or
T (different choices give isomorphic rings).

Universal representation
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While this construction works for any fixed matroid,
often classes of matroids are of interest. For exam-
ple:

• Free spikes, free swirls (there’s one of each for
each rank r);

• One-element co-extensions of PG(2, q), that are
still representable over GF(q);

• Uniform matroids (cf. “The Main Conjecture for
MDS codes”).

Some open problems
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• If M1,M2 are matroids, how to test if BM1
∼= BM2?

• What rings can occur as BM?

Theorem 3 (Tutte 1965). If M is binary and 3-
connected, then BM ∼= GF(2) or BM ∼= Z.

Theorem 4 (Whittle 1997). If M is ternary, nonbi-
nary, and 3-connected, then BM

∼= GF(3) or Z[1/2]
or Z[ζ] or Z[α,1/α,1−α,1/(1−α)]. Here ζ is a root
of 2 − + 1.

Note: no finite list for GF(q), q ≥ 4. Otherwise no
results known for nonbinary and nonternary classes.

Classification problems
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A′ is a minor of A (notation: A′ � A) if A′ can be
obtained from A by a sequence of the following op-
erations:

(i) Multiplying the entries of a row or column by a
unit;

(ii) Deleting rows or columns;

(iii) Permuting rows or columns (together with labels);

(iv) Pivoting over a nonzero entry.

Minors
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Cr(A) :=
�

p :
�

1 1
p 1

�

� A
�

.

Occur in pairs of (at most) six:
¨

p,1− p,
1

1− p
,

p

p− 1
,
p− 1
p

,
1

p

«

.

Theorem 5. BM equals the subring generated by
Cr(AM,X).

Cross ratios
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Fundamental elts.: F(BM) := {p ∈ B∗M | 1− p ∈ B
∗
M}.

eF := {ep | p ∈ F(BM)} set of symbols,  ideal in Z[eF]
generated by

(i) e0− 0; e1− 1;

(ii)g−1+ 1 if −1 ∈ F(BM);
(iii) ep+ eq− 1, where p, q ∈ F(BM), p+ q = 1;

(iv) epeq− 1, where p, q ∈ F(BM), pq = 1;

(v) epeqer − 1, where p, q, r ∈ Cr(AM,X), pqr = 1, and
�

1 1 1
1 p q−1

�

� AM,X. (1)

Theorem 6. M is representable over Z[eF]/ .

Lifts
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For this to be useful beyond ternary matroids, need:

• Understand the set F(BM), or

• Manage to replace F(P) by Cr(A) throughout and
characterize relations (iii), (iv) in terms of minors.

Nasty example: universal partial field of follow-
ing configuration is GF(2)[α,1 − α,1/α,1/(1 − α)].
The set of fundamental elements is infinite, since
1− α2k = (1− α)2k.

Obstacles
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Suggestions?

The start.


