

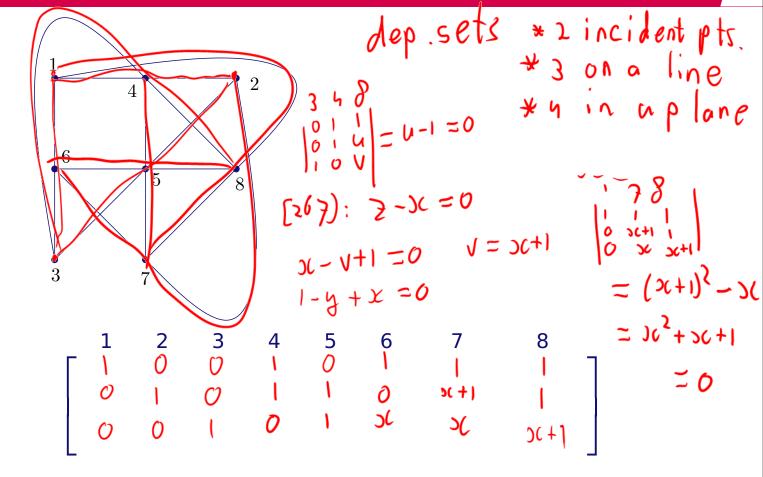
Stefan van Zwam

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

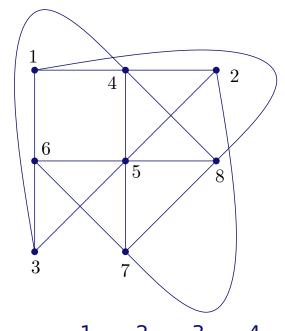
Based on joint work with Rudi Pendavingh May 21, 2008

Example



Tule Technische Universiteit Eindhoven University of Technology

Example



T	2	3	4	5	О	/	8
							1
0	1	0	1	1	0	x + 1	1
0	0	1	0	1	X	X	$\begin{bmatrix} 1 \\ x+1 \end{bmatrix}$

The topic for today

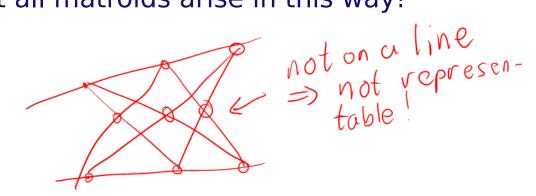
 How to find (all) representations of "combinatorial geometries".

What is a matroid?

A matroid is a pair (E, \mathcal{B}) , where E is a finite set and \mathcal{B} a collection of subsets of E, the *bases*, satisfying the axioms

- (i) \mathcal{B} is nonempty;
- (ii) If $B_1, B_2 \in \mathcal{B}$, and $x \in B_1 \setminus B_2$, then there exists a $y \in B_2 \setminus B_1$ such that $(B_1 \setminus x) \cup y \in \mathcal{B}$.

Example: *E* is a set of vectors in some vector space. Note that not all matroids arise in this way!



Representability

If A is $r \times E$ matrix over field \mathbb{F} , then $M(A) = (E, \mathcal{B})$ is matroid with $E = \{\text{columns of } A\}$ and $\mathcal{B} = \{\text{maximal linearly independent sets}\}$. M(A) invariant under

- (i) Swapping columns and labels
- (ii) Row operations
- (iii) Column scaling

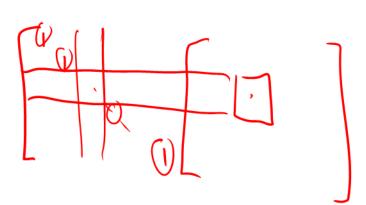
Standard representation: some basis forms identity matrix.

Standard representation

Note: 1-1 correspondence between square submatrices of A and $r \times r$ submatrices of [I|A].

Notation: suppose $X' \subseteq X, Y' \subseteq Y$. Then A[X', Y'] is restriction of A to rows X', columns Y'. If $Z \subseteq X \cup Y$ then $A[Z] = A[X \setminus Z, Y \cap Z]$.

Now a set $Z \subseteq X \cup Y$ is a basis of M([I|A]) if and only if |Z| = r and $det(A[Z]) \neq 0$.



Pivots

Move between standard representations by *pivoting* on a nonzero entry:

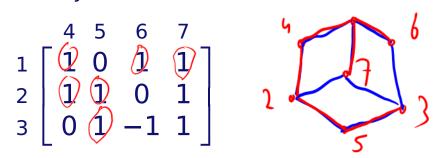
$$A = \frac{x}{x'} \left[\begin{array}{c|c} y & \gamma' \\ \hline a & b \\ \hline c & D \end{array} \right] \rightarrow \frac{y}{x'} \left[\begin{array}{c|c} x & \gamma' \\ \hline a^{-1} & a^{-1}b \\ \hline -a^{-1}c & D - a^{-1}cb \end{array} \right] = A^{xy}.$$

In matrix [I|A] this is row reduction followed by column exchange.

Normalization

Choose basis X. A is an $X \times Y$ rep. matrix over \mathbb{F} .

- Positions of zeroes are fixed.
- G(A) is bipartite graph with vertex classes X, Y. $xy \in E(G)$ if and only if $A_{xy} \neq 0$.
- Suppose edges x_1y_1, \ldots, x_ky_k form spanning forest of G(A). Let $\theta_1, \ldots, \theta_k \in \mathbb{F}^*$. Can scale rows and columns so that $A_{x_iy_i} = \theta_i$ for all i.
- A is normalized if, for some spanning forest T, $A_{xy} = 1$ for all $xy \in T$.



Universal representation

 $M = (X \cup Y, \mathcal{B}); X \text{ basis. } A_{M,X} = (a_{ij}) X \times Y \text{ matrix};$ a_{ij} unknowns. For each $B \in \mathcal{B}$ an unknown i_B . Ring $\mathbb{Z}[\{a_{ij}\} \cup \{i_B\}]$. Construct ideal I:

- If $(X \setminus i) \cup j \notin \mathcal{B}$ then $a_{ij} \in I$;
- T spanning forest of G(A). If $ij \in T$ then $a_{ij} 1 \in I$;
- $Z \subseteq X \cup Y$, |Z| = r. If $Z \notin \mathcal{B}$ then $\det(A_{M,X}[Z]) \in I$;
- $Z \subseteq X \cup Y$, |Z| = r. If $Z \in \mathcal{B}$ then $\det(A_{M,X}[Z])i_Z 1 \in I$.

$$\overline{\mathbb{B}}_{M} := \mathbb{Z}[\{\alpha_{ij}\} \cup \{i_{B}\}]/I.$$

(Fenton 1984, mostly)

Universal representation

Theorem 1. If A is an $X \times Y$ matrix over field \mathbb{F} such that M = M([I|A]), and A is T-normalized, then there is a ring homomorphism $\varphi : \overline{\mathbb{B}}_M \to \mathbb{F}$ such that

$$\varphi(A_{M,X}) = A.$$

Theorem 2. \mathbb{B}_M does not depend on choice of X or T (different choices give isomorphic rings).

Some open problems

While this construction works for any fixed matroid, often *classes* of matroids are of interest. For example:

- Free spikes, free swirls (there's one of each for each rank r);
- One-element co-extensions of PG(2, q), that are still representable over GF(q);

Classification problems

- If M_1, M_2 are matroids, how to test if $\overline{\mathbb{B}}_{M_1} \cong \overline{\mathbb{B}}_{M_2}$?
- What rings can occur as $\overline{\mathbb{B}}_M$?

Theorem 3 (Tutte 1965). If M is binary and 3-connected, then $\overline{\mathbb{B}}_M \cong \mathsf{GF}(2)$ or $\overline{\mathbb{B}}_M \cong \mathbb{Z}$.

Theorem 4 (Whittle 1997). If M is ternary, nonbinary, and 3-connected, then $\overline{\mathbb{B}}_M \cong GF(3)$ or $\mathbb{Z}[1/2]$ or $\mathbb{Z}[\zeta]$ or $\mathbb{Z}[\alpha, 1/\alpha, 1-\alpha, 1/(1-\alpha)]$. Here ζ is a root of $\chi^2_1 - \chi + 1$.

Note: no finite list for GF(q), $q \ge 4$. Otherwise no results known for nonbinary and nonternary classes.

Minors

- A' is a *minor* of A (notation: $A' \preceq A$) if A' can be obtained from A by a sequence of the following operations:
- (i) Multiplying the entries of a row or column by a unit;
- (ii) Deleting rows or columns;
- (iii) Permuting rows or columns (together with labels);
- (iv) Pivoting over a nonzero entry.

Cross ratios

$$\begin{bmatrix}
1 & 0 & | & 1 & | & 0 & |$$

Occur in pairs of (at most) six:

$$\left\{p, 1-p, \frac{1}{1-p}, \frac{p}{p-1}, \frac{p-1}{p}, \frac{1}{p}\right\}.$$

Theorem 5. $\overline{\mathbb{B}}_M$ equals the subring generated by $Cr(A_{M,X})$.

Lifts

Fundamental elts.: $\mathcal{F}(\mathbb{B}_M) := \{ p \in \mathbb{B}_M^* \mid 1 - p \in \mathbb{B}_M^* \}$.

$$\widetilde{F} := \{ \widetilde{p} \mid p \in \mathcal{F}(\mathbb{B}_M) \}$$
 set of symbols, I ideal in $\mathbb{Z}[\widetilde{F}]$ generated by

(i)
$$\widetilde{0} - 0$$
; $\widetilde{1} - 1$;

$$(ii)$$
 $\widetilde{-1} + 1$ if $-1 \in \mathcal{F}(\mathbb{B}_M)$;

(iii)
$$\widetilde{p} + \widetilde{q} - 1$$
, where $p, q \in \mathcal{F}(\mathbb{B}_M)$, $p + q = 1$; (iv) $\widetilde{p}\widetilde{q} - 1$, where $p, q \in \mathcal{F}(\mathbb{B}_M)$, $pq = 1$;

(v)
$$\widetilde{p}\widetilde{q}\widetilde{r} - 1$$
, where $p, q, r \in Cr(A_{M,X})$, $pqr = 1$, and

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & p & q^{-1} \end{bmatrix} \preceq A_{M,X}.$$

Theorem 6. *M* is representable over $\mathbb{Z}[\widetilde{F}]/I$.

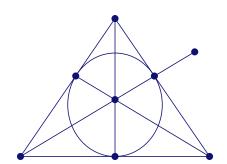
Technische Universiteit
Eindhoven
University of Technology

Obstacles

For this to be useful beyond ternary matroids, need:

- Understand the set $\mathcal{F}(\mathbb{B}_M)$, or
- Manage to replace $\mathcal{F}(\mathbb{P})$ by Cr(A) throughout and characterize relations (iii), (iv) in terms of minors.

Nasty example: universal partial field of following configuration is $GF(2)[\alpha, 1-\alpha, 1/\alpha, 1/(1-\alpha)]$. The set of fundamental elements is *infinite*, since $1-\alpha^{2^k}=(1-\alpha)^{2^k}$.



Suggestions?

