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1. Sphere Packings and Quadratic Forms

The geometry of numbers is a field of mathematics initiated and named by Minkowski. The main objects studied are /attices, discrete
subgroups of R”. A classical problem is the search for a lattice with a dense sphere packing. Hermite’s constant y, iIs a measure
for the maximum density of a lattice sphere packing in dimension n. This constant has been determined exactly for n < 8 and n = 24.
All relevant information is captured by the quadratic form associated with the lattice. It has the following, unique, Lagrange expansion:

n

2

CI(XL---,Xn)=2Ai(Xi—ZO(UXj) : (1)
=1 j>i

Quadratic forms g, g’ are equivalent if g’(x) = q(Ux) for some unimodular matrix U. A form is Korkin-

Zolotarev reduced if
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Hermite’'s constant, in terms of quadratic forms, is defined as ;“‘:.‘
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Yn :=Max | g is an n-ary positive definite quadratic form ;. (2)
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Each quadratic form is equivalent to a KZ-reduced one. Therefore we have
A1 . Figure 1: Part of a lattice sphere
Yn = Max {(l—[zAi)l/” | (A1,...,An) are outer coefficients for some KZ-reduced form q}. (3) packing in 3 dimensions

Like Korkin and Zolotarev [1], we will study the feasible set of this maximization problem to obtain
upper bounds.

2. Semidefinite Programming 3. Results
mportant observation: only finitely many inequalities from (M) are Korkin and Zolotarev [1] proved
sufficient to characterize the KZ-reduced forms: 3 5
Theorem 1 (Novikova [3]). For each n > 2, there is a finite set Aip1 = —A, and A, > —A,. (5)
Xn € Z" such that an n-ary form with Lagrange expansion (1) is 4 3
2 . ’
KZ-reduced if and only if ZLZA[(X[ — Zj>iaijxj) is KZ-reduced, (S) Hermite’s constant can be bounded by
holds and Al
"< ma 1 5),A1 =1}, 6
A1 < g(x) for all x € Xp. (4) ¥ = X{nlﬁzlAi'( h A } (©)
We want to find linear inequalities bounding the feasible set of (3). which is exact for n < 4. The maximum is necessarily attained at
This leads to linear optimization problems on the semialgebraic set a vertex of the polyhedron. For larger n, bounds were obtained by
defined by (S) and the finite subset of (M). We construct a semidef- other methods. We proved the following new inequalities:
inite programming relaxation of this problem, following [2]. We im- Theorem 2.If (Ai,....A,) are the outer coefficients of a KZ-

prove the lower bound by branch and bound: reduced quadratic form, and n > 4, then

e Pick i, .

. . . . . —25A; —-36A, +48A; +40A, >—-7-10"%A, (7)

e Split the d f a;;, defined S), int ts.
Spll ts :maln oltc.xl,, et.ne. |: (S) mblwo parts _5A, 124, +8A. >-3.10"%A. (8)
e Solve the two resulting optimization problems. _4A, _3A; +4A, +8As >-5.10"5Ac (9)

Each problem yields a bound on the optimum over that smaller set;
the worst will bound the original problem. Repeating this we get Conjecture 1. All right-hand sides above can be improved to 0.
very good approximations to the optimum. Efficiency depends on
how ( and j are picked.

Each bound can be certified by a solution to the dual of that SDP.
The dual solution can be approximated by a rational vector. This
was used to prove Theorem 2 rigorously.

If this is true, these inequalities give the exact bound on Her-
mite’'s constant for n < 8 using the analog of (6). Main open prob-
lem: find, and prove, suitable new inequalities for n = 9 or 10.
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Figure 2: /nequalities on the outer coefficients for n = 4, where
A1 =1. The red plane corresponds to (7).

/department of mathematics and computing science




