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1. Sphere Packings and Quadratic Forms

The geometry of numbers is a field of mathematics initiated and named by Minkowski. The main objects studied are lattices, discrete
subgroups of Rn. A classical problem is the search for a lattice with a dense sphere packing. Hermite’s constant γn is a measure

for the maximum density of a lattice sphere packing in dimension n. This constant has been determined exactly for n ≤ 8 and n = 24.
All relevant information is captured by the quadratic form associated with the lattice. It has the following, unique, Lagrange expansion:
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Quadratic forms q, q′ are equivalent if q′() = q(U) for some unimodular matrix U. A form is Korkin–
Zolotarev reduced if
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for all nonzero  ∈ Zn−k+1, k = 1, . . . , n− 1. (M)

Hermite’s constant, in terms of quadratic forms, is defined as

γn :=mx
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| q is an n-ary positive definite quadratic form
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Each quadratic form is equivalent to a KZ-reduced one. Therefore we have

γn =mx
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| (A1, . . . , An) are outer coefficients for some KZ-reduced form q
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Like Korkin and Zolotarev [1], we will study the feasible set of this maximization problem to obtain
upper bounds.

Figure 1: Part of a lattice sphere
packing in 3 dimensions

2. Semidefinite Programming

Important observation: only finitely many inequalities from (M) are
sufficient to characterize the KZ-reduced forms:

Theorem 1 (Novikova [3]). For each n ≥ 2, there is a finite set
Xn ⊆ Zn such that an n-ary form with Lagrange expansion (1) is

KZ-reduced if and only if
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is KZ-reduced, (S)
holds and

A1 ≤ q() for all  ∈ Xn. (4)

We want to find linear inequalities bounding the feasible set of (3).
This leads to linear optimization problems on the semialgebraic set
defined by (S) and the finite subset of (M). We construct a semidef-
inite programming relaxation of this problem, following [2]. We im-
prove the lower bound by branch and bound:

• Pick , j.

• Split the domain of α,j, defined in (S), in two parts.

• Solve the two resulting optimization problems.

Each problem yields a bound on the optimum over that smaller set;
the worst will bound the original problem. Repeating this we get
very good approximations to the optimum. Efficiency depends on
how  and j are picked.
Each bound can be certified by a solution to the dual of that SDP.
The dual solution can be approximated by a rational vector. This
was used to prove Theorem 2 rigorously.
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3. Results

Korkin and Zolotarev [1] proved
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A. (5)

Hermite’s constant can be bounded by

γn
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, (6)

which is exact for n ≤ 4. The maximum is necessarily attained at
a vertex of the polyhedron. For larger n, bounds were obtained by
other methods. We proved the following new inequalities:

Theorem 2. If (A1, . . . , An) are the outer coefficients of a KZ-
reduced quadratic form, and n ≥ 4, then

−25A1 −36A2 +48A3 +40A4 ≥ −7 · 10−6A4 (7)
−5A1 +2A4 +8A5 ≥ −3 · 10−4A5 (8)
−4A1 −3A3 +4A4 +8A5 ≥ −5 · 10−5A5 (9)

Conjecture 1. All right-hand sides above can be improved to 0.

If this is true, these inequalities give the exact bound on Her-
mite’s constant for n ≤ 8 using the analog of (6). Main open prob-
lem: find, and prove, suitable new inequalities for n = 9 or 10.

0

0.5

1

1.5

A2

0

0.5

1

1.5

A3

0

0.5

1

1.5

A4

0

0.5

1
A2

Figure 2: Inequalities on the outer coefficients for n = 4, where
A1 = 1. The red plane corresponds to (7).


