Confinement to sub-partial fields

Stefan van Zwam Based on joint work with Rudi Pendavingh

Tue Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

Minors of matrices

Let A be an $X \times Y$ matrix. A *minor* of A is a matrix obtained by

- Scaling rows and columns;
- Deleting rows and columns (notation: A x);
- Pivoting on a nonzero entry:

$$A = {}^{\times}_{X'} \left[\begin{array}{c|c} y & Y' \\ \hline a & b \\ \hline c & D \end{array} \right] \rightarrow {}^{y}_{X'} \left[\begin{array}{c|c} x & Y' \\ \hline a^{-1} & a^{-1}b \\ \hline -a^{-1}c & D - a^{-1}cb \end{array} \right] = A^{\times y}$$

Minors of matrices

Let A be an $X \times Y$ matrix. A *minor* of A is a matrix obtained by

- Scaling rows and columns;
- Deleting rows and columns (notation: A x);
- Pivoting on a nonzero entry:

$$A = \frac{x}{x'} \begin{bmatrix} \frac{a}{a} & b \\ \hline c & D \end{bmatrix} \rightarrow \frac{y}{x'} \begin{bmatrix} \frac{a^{-1}}{a^{-1}c} & a^{-1}b \\ \hline -a^{-1}c & D - a^{-1}cb \end{bmatrix} = A^{xy}.$$

Correspond with minors of matroid M([I|A]).

$$\begin{bmatrix} 1 & 0 & \\ & \ddots & & A \\ 0 & 1 & \end{bmatrix} \longleftrightarrow X \begin{bmatrix} & A & \\ & A & \end{bmatrix}$$

• A partial field $\mathbb P$ is a pair $(\mathbb O, \mathbf G)$ of a ring and a group, such that

$$-1 \in \mathbf{G} \subseteq \mathbb{O}^*$$
.

Elements of \mathbb{P} are elements of $\mathbf{G} \cup \{0\}$.

• A matrix A over $\mathbb O$ is a $\mathbb P$ -matrix if $\det(B) \in \mathbb P$ for all square submatrices of A.

Let $\mathbb{P}_1 := (\mathbb{O}_1, \mathbf{G}_1)$ and $\mathbb{P}_2 := (\mathbb{O}_2, \mathbf{G}_2)$.

- $\varphi : \mathbb{P}_1 \to \mathbb{P}_2$ is homomorphism if
 - $-\varphi(1)=1$
 - $-\varphi(pq) = \varphi(p)\varphi(q)$
 - If $p + q \in \mathbb{P}$ then $\varphi(p) + \varphi(q) = \varphi(p + q)$

Example: ring homomorphism with $\varphi(\mathbf{G}_1) \subseteq \mathbf{G}_2$.

 $\bullet M(A) = M(\varphi(A))$

• If $\mathbb{P}_1 = (\mathbb{O}_1, \mathbf{G}_1)$ and $\mathbb{P}_2 = (\mathbb{O}_2, \mathbf{G}_2)$ then

$$\mathbb{P}_1 \otimes \mathbb{P}_2 := (\mathbb{O}_1 \times \mathbb{O}_2, \mathbf{G}_1 \times \mathbf{G}_2).$$

addition, multiplication componentwise.

• If $\mathbb{P}_1 = (\mathbb{O}_1, \mathbf{G}_1)$ and $\mathbb{P}_2 = (\mathbb{O}_2, \mathbf{G}_2)$ then

$$\mathbb{P}_1 \otimes \mathbb{P}_2 := (\mathbb{O}_1 \times \mathbb{O}_2, \mathbf{G}_1 \times \mathbf{G}_2).$$

addition, multiplication componentwise.

• If $M = M([I|A_1]) = M([I|A_2])$, then

$$M = M([I|A_1 \otimes A_2]).$$

• If $\mathbb{P}_1 = (\mathbb{O}_1, \mathbf{G}_1)$ and $\mathbb{P}_2 = (\mathbb{O}_2, \mathbf{G}_2)$ then

$$\mathbb{P}_1 \otimes \mathbb{P}_2 := (\mathbb{O}_1 \times \mathbb{O}_2, \mathbf{G}_1 \times \mathbf{G}_2).$$

addition, multiplication componentwise.

• If $M = M([I|A_1]) = M([I|A_2])$, then

$$M = M([I|A_1 \otimes A_2]).$$

$$\begin{pmatrix} 1 & 1 \\ 1 & p_1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 1 \\ 1 & p_2 \end{pmatrix} = \begin{pmatrix} (1,1) & (1,1) \\ (1,1) & (p_1,p_2) \end{pmatrix}$$

Theorem 1 (Tutte 1965). Let M be a matroid. The following are equivalent:

- M is representable over GF(2) and GF(3)
- M is representable over $\mathbb R$ by a totally unimodular matrix
- M is representable over every field

Theorem 1 (Tutte 1965). Let M be a matroid. The following are equivalent:

- M is representable over GF(2) and GF(3)
- ullet M is representable over $\mathbb R$ by a totally unimodular matrix
- M is representable over every field

Proof. Consider partial field $GF(2) \otimes GF(3)$. Elements are (0,0),(1,1),(1,-1). Find bijective homomorphism

 $\varphi: \mathsf{GF}(2) \otimes \mathsf{GF}(3) \to (\mathbb{Z}, \{-1, 1\}).$

Theorem 1' (Tutte 1965). Let M be a matroid. The following are equivalent:

- M is representable over GF(2) and field not of characteristic 2
- M is representable over $\mathbb R$ by a totally unimodular matrix

Theorem 1' (Tutte 1965). Let M be a matroid. The following are equivalent:

- M is representable over GF(2) and field not of characteristic 2
- ullet M is representable over ${\mathbb R}$ by a totally unimodular matrix

Proof. Consider partial field $GF(2) \otimes \mathbb{F}$. Elements are (0,0) and (1,x) where $x \in \mathbb{F}^*$. Then ...

Problem: $GF(2) \otimes \mathbb{F}$ is too big!

Definition 2. Fundamental elements of P

$$\mathcal{F}(\mathbb{P}) := \{ p \in \mathbb{P} \mid 1 - p \in \mathbb{P} \}.$$

Theorem 3. *M* is \mathbb{P} -representable \Leftrightarrow *M* is $\mathbb{P}[\mathcal{F}(\mathbb{P})]$ -representable.

Theorem 1' (Tutte 1965). Let M be a matroid. The following are equivalent:

- M is representable over GF(2) and field not of characteristic 2
- ullet M is representable over ${\mathbb R}$ by a totally unimodular matrix

Proof. Consider partial field GF(2) \otimes \mathbb{F} . Elements are (0,0) and (1,x) where $x \in \mathbb{F}^*$. Then ... $\mathcal{F}(P) = \{(0,0), (1,1)\} \cup \{(1,3), (1,3), (1,3)\} \longrightarrow x \in \mathbb{F}\}$ $\mathcal{P}(\mathcal{F}(P)) = \{(0,0), (1,1), (1,-1)\}, (0,1-3)\}$

Confinement Theorem

10/23

Theorem 4. $\mathbb{P}' \subseteq \mathbb{P}$ induced. B 3-connected scaled \mathbb{P}' -matrix. A 3-connected \mathbb{P} -matrix with submatrix B.

(i) A is a scaled \mathbb{P}' -matrix;

- (i) A is a scaled \mathbb{P}' -matrix;
- (ii) A has 3-connected $X \times Y$ -minor A' such that
 - A' is not a scaled \mathbb{P}' -matrix.

- (i) A is a scaled \mathbb{P}' -matrix;
- (ii) A has 3-connected $X \times Y$ -minor A' such that
 - A' is not a scaled P'-matrix.
 - B is isomorphic to A'-U, with $|U\cap X| \leq 1$, $|U\cap Y| \leq 1$:

- (i) A is a scaled \mathbb{P}' -matrix;
- (ii) A has 3-connected $X \times Y$ -minor A' such that
 - A' is not a scaled \mathbb{P}' -matrix.
 - B is isomorphic to A'-U, with $|U\cap X| \le 1$, $|U\cap Y| \le 1$;
 - If B is isomorphic to $A' \{x, y\}$ then at least one of A' x, A' y is 3-connected.

Theorem 5 (Stabilizer Theorem, Whittle 1999). M, N 3-connected \mathbb{P} -representable matroids, $N \leq M$. Exactly one of the following is true:

(i) N stabilizes M;

Theorem 5 (Stabilizer Theorem, Whittle 1999). M, N 3-connected \mathbb{P} -representable matroids, $N \leq M$. Exactly one of the following is true:

- (i) N stabilizes M;
- (ii) M has 3-connected minor M' such that
 - N does not stabilize M';

Theorem 5 (Stabilizer Theorem, Whittle 1999). M, N 3-connected \mathbb{P} -representable matroids, $N \leq M$. Exactly one of the following is true:

- (i) N stabilizes M;
- (ii) M has 3-connected minor M' such that
 - N does not stabilize M';
 - N is isomorphic to M'/x, M'\y, or M'/x\y;

Stabilizer Theorem

Matroid *N* stabilizes *M* over \mathbb{P} if the representation of *N* determines uniquely that of *M*.

Theorem 5 (Stabilizer Theorem, Whittle 1999). M, N 3-connected \mathbb{P} -representable matroids, $N \leq M$. Exactly one of the following is true:

- (i) N stabilizes M;
- (ii) M has 3-connected minor M' such that
 - N does not stabilize M';
 - N is isomorphic to M'/x, M'\y, or M'/x\y;
 - If $N \cong M'/x \setminus y$ then one of $M'/x, M' \setminus y$ is 3-connected.

Corollary 5 (Stabilizer Theorem, Whittle 1999). M, N 3-connected \mathbb{P} -representable matroids, $N \leq M$. Exactly one of the following is true:

- (i) N stabilizes M;
- (ii) M has 3-connected minor M' such that
 - N does not stabilize M';
 - N is isomorphic to M'/x, $M' \setminus y$, or $M'/x \setminus y$;
 - If $N \cong M'/x \setminus y$ then one of $M'/x, M' \setminus y$ is 3-connected.

Corollary 5. *M, N 3-connected* P-representable matroids, $N \leq M$. Exactly one of the following is true:

- (i) N stabilizes M:
- (ii) M has 3-connected minor M' such that
 - N does not stabilize M';
 - N is isomorphic to M'/x, $M' \setminus y$, or $M'/x \setminus y$;

 - $N \cong M'/x \setminus y \Rightarrow M'/x \text{ or } M' \setminus y \text{ is 3-connected.}$ $P_0 := P \otimes P$ $P_0 := (x \times y) \mid x \in P$ Apply conf. thm. to each $P_0' rep$.

Theorem 6. Let M be a 3-connected matroid with at least k inequivalent representations over GF(5).

(i) $k \ge 2 \Rightarrow M$ representable over \mathbb{C} , $GF(p^2)$ for all primes $p \ge 3$, GF(p) when $p \equiv 1 \mod 4$.

Theorem 6. Let M be a 3-connected matroid with at least k inequivalent representations over GF(5).

- (i) $k \ge 2 \Rightarrow M$ representable over \mathbb{C} , $GF(p^2)$ for all primes $p \ge 3$, GF(p) when $p \equiv 1 \mod 4$.
- (ii) $k \ge 3 \Rightarrow M$ representable over every field with at least five elements.

Theorem 6. Let M be a 3-connected matroid with at least k inequivalent representations over GF(5).

- (i) $k \ge 2 \Rightarrow M$ representable over \mathbb{C} , $GF(p^2)$ for all primes $p \ge 3$, GF(p) when $p \equiv 1 \mod 4$.
- (ii) $k \ge 3 \Rightarrow M$ representable over every field with at least five elements.
- (iii) $k \ge 4 \Rightarrow M$ is not binary and not ternary.

Theorem 6. Let M be a 3-connected matroid with at least k inequivalent representations over GF(5).

- (i) $k \ge 2 \Rightarrow M$ representable over \mathbb{C} , $GF(p^2)$ for all primes $p \ge 3$, GF(p) when $p \equiv 1 \mod 4$.
- (ii) $k \ge 3 \Rightarrow M$ representable over every field with at least five elements.
- (iii) $k \ge 4 \Rightarrow M$ is not binary and not ternary.
- (iv) $k \ge 5 \Rightarrow k = 6$.

Theorem 6. Let M be a 3-connected matroid with at least k inequivalent representations over GF(5).

- (i) $k \ge 2 \Rightarrow M$ representable over \mathbb{C} , $GF(p^2)$ for all primes $p \ge 3$, GF(p) when $p \equiv 1 \mod 4$.
- (ii) $k \ge 3 \Rightarrow M$ representable over every field with at least five elements.
- (iii) $k \ge 4 \Rightarrow M$ is not binary and not ternary.
 - (iv) $k \ge 5 \Rightarrow k = 6$.

Ingredients of proof:

- Universal partial fields (for binary, ternary cases);
- Lift Theorem;
- Confinement Theorem.

 $\widetilde{F} := \{\widetilde{p} \mid p \in \mathcal{F}(\mathbb{P})\}\$ set of symbols, I ideal in $\mathbb{Z}[\widetilde{F}]$ generated by

(i)
$$\widetilde{0} - 0$$
; $\widetilde{1} - 1$;

$$(ii)$$
 $-1+1$ if $-1 \in \mathcal{F}(\mathbb{P})$;

(iii)
$$\widetilde{p} + \widetilde{q} - 1$$
, where $p, q \in \mathcal{F}(\mathbb{P})$, $p + q = 1$;

(iv)
$$\widetilde{p}\widetilde{q} - 1$$
, where $p, q \in \mathcal{F}(\mathbb{P})$, $pq = 1$;

(v)
$$\widetilde{p}\widetilde{q}\widetilde{r} - 1$$
, where $p, q, r \in Cr(A)$, $pqr = 1$, and

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & p & q^{-1} \end{bmatrix} \preceq A \in \mathcal{A}.$$

 $\widetilde{F} := \{ \widetilde{p} \mid p \in \mathcal{F}(\mathbb{P}) \}$ set of symbols, I ideal in $\mathbb{Z}[\widetilde{F}]$

generated by

(i) $\tilde{0} - 0$: $\tilde{1} - 1$:

(ii) $\widetilde{-1} + 1$ if $-1 \in \mathcal{F}(\mathbb{P})$;

(iii) $\widetilde{p} + \widetilde{q} - 1$, where $p, q \in \mathcal{F}(\mathbb{P})$, p + q = 1;

(iv) $\widetilde{p}\widetilde{q} - 1$, where $p, q \in \mathcal{F}(\mathbb{P})$, pq = 1;

 $(v) \widetilde{p} \widetilde{q} \widetilde{r} - 1$, where $p, q, r \in Cr(A)$, pqr = 1, and

 $\begin{bmatrix} 1 & 1 & 1 \\ 1 & p & q^{-1} \end{bmatrix} \preceq A \in \mathcal{A}.$

Theorem 7. For $A \in \mathcal{A}$, M([I|A]) is representable over $\mathbb{L}_A \mathbb{P} = (\mathbb{Z}\lceil \widetilde{F} \rceil / I, \langle \widetilde{F} \rangle).$

(i) $k \ge 2 \Rightarrow M$ representable over \mathbb{C} , $GF(p^2)$ for all primes $p \ge 3$, GF(p) when $p \equiv 1 \mod 4$.

- (i) $k \ge 2 \Rightarrow M$ representable over \mathbb{C} , $GF(p^2)$ for all primes $p \ge 3$, GF(p) when $p \equiv 1 \mod 4$.
 - $\mathbb{P} := \mathsf{GF}(5) \otimes \mathsf{GF}(5);$

- (i) $k \ge 2 \Rightarrow M$ representable over \mathbb{C} , $GF(p^2)$ for all primes $p \ge 3$, GF(p) when $p \equiv 1 \mod 4$.
 - $\mathbb{P} := \mathsf{GF}(5) \otimes \mathsf{GF}(5);$
 - $\varphi_i : \mathbb{P} \to GF(5)$: projection on *i*th coordinate;

- (i) $k \ge 2 \Rightarrow M$ representable over \mathbb{C} , $GF(p^2)$ for all primes $p \ge 3$, GF(p) when $p \equiv 1 \mod 4$.
 - $\mathbb{P} := \mathsf{GF}(5) \otimes \mathsf{GF}(5);$
 - $\varphi_i : \mathbb{P} \to GF(5)$: projection on *i*th coordinate;
 - \mathcal{A} is set of \mathbb{P} -matrices A with $\varphi_1(A) \not\sim \varphi_2(A)$;

- (i) $k \ge 2 \Rightarrow M$ representable over \mathbb{C} , $GF(p^2)$ for all primes $p \ge 3$, GF(p) when $p \equiv 1 \mod 4$.
 - $\mathbb{P} := \mathsf{GF}(5) \otimes \mathsf{GF}(5);$
 - $\varphi_i : \mathbb{P} \to GF(5)$: projection on *i*th coordinate;
 - \mathcal{A} is set of \mathbb{P} -matrices A with $\varphi_1(A) \not\sim \varphi_2(A)$;
 - $\bullet \mathbb{H}_2 := \mathbb{L}_{\mathcal{A}} \mathbb{P}.$

(i) $k \ge 2 \Rightarrow M$ representable over \mathbb{C} , $GF(p^2)$ for all primes $p \ge 3$, GF(p) when $p \equiv 1 \mod 4$.

- $\mathbb{P} := \mathsf{GF}(5) \otimes \mathsf{GF}(5);$
- $\varphi_i : \mathbb{P} \to \mathsf{GF}(5)$: projection on *i*th coordinate;
- \mathcal{A} is set of \mathbb{P} -matrices A with $\varphi_1(A) \not\sim \varphi_2(A)$;
- $\bullet \mathbb{H}_2 := \mathbb{L}_{\mathcal{A}} \mathbb{P}.$

Note: A is essential.

$$\begin{bmatrix}
(1,1) & (1,1) & (1,1) \\
(1,1) & (2,2) & (3,3)
\end{bmatrix}$$

Stabilizer Theorem implies these are not minors of $A \in \mathcal{A}$.

- (i) $k \ge 2 \Rightarrow M$ representable over \mathbb{C} , $GF(p^2)$ for all primes $p \ge 3$, GF(p) when $p \equiv 1 \mod 4$.
 - $\mathbb{P} := \mathsf{GF}(5) \otimes \mathsf{GF}(5);$
 - $\varphi_i : \mathbb{P} \to GF(5)$: projection on *i*th coordinate;
 - \mathcal{A} is set of \mathbb{P} -matrices A with $\varphi_1(A) \not\sim \varphi_2(A)$;
 - $\bullet \mathbb{H}_2 := \mathbb{L}_{\mathcal{A}} \mathbb{P}.$

$$\mathbb{H}_2 = (\mathbb{C}, \langle i, 1-i \rangle).$$

- (i) $k \ge 2 \Rightarrow M$ representable over \mathbb{C} , $GF(p^2)$ for all primes $p \ge 3$, GF(p) when $p \equiv 1 \mod 4$.
 - $\mathbb{P} := \mathsf{GF}(5) \otimes \mathsf{GF}(5);$
 - $\varphi_i : \mathbb{P} \to GF(5)$: projection on *i*th coordinate;
 - \mathcal{A} is set of \mathbb{P} -matrices A with $\varphi_1(A) \not\sim \varphi_2(A)$;
 - ullet $\mathbb{H}_2:=\mathbb{L}_{\mathcal{A}}\mathbb{P}.$

$$\mathbb{H}_2 = (\mathbb{C}, \langle i, 1-i \rangle).$$

$$\mathcal{F}(\mathbb{H}_2) = \left\{0, 1, -1, 2, \frac{1}{2}, i, i+1, \frac{i+1}{2}, 1-i, \frac{1-i}{2}, -i\right\}.$$

Result follows by considering homomorphisms.

• $\mathbb{P} := GF(5) \otimes GF(5) \otimes GF(5)$;

- $\mathbb{P} := \mathsf{GF}(5) \otimes \mathsf{GF}(5) \otimes \mathsf{GF}(5)$;
- $\varphi_i : \mathbb{P} \to GF(5)$: projection on *i*th coordinate;

- $\mathbb{P} := \mathsf{GF}(5) \otimes \mathsf{GF}(5) \otimes \mathsf{GF}(5)$;
- $\varphi_i : \mathbb{P} \to GF(5)$: projection on *i*th coordinate;
- A is set of \mathbb{P} -matrices A with $\varphi_i(A)$ nonequivalent;

- $\mathbb{P} := \mathsf{GF}(5) \otimes \mathsf{GF}(5) \otimes \mathsf{GF}(5)$;
- $\varphi_i : \mathbb{P} \to GF(5)$: projection on *i*th coordinate;
- A is set of \mathbb{P} -matrices A with $\varphi_i(A)$ nonequivalent;
- $\mathbb{H}'_3 := \mathbb{L}_{\mathcal{A}}\mathbb{P}$.

- $\mathbb{P} := GF(5) \otimes GF(5) \otimes GF(5)$;
- $\varphi_i : \mathbb{P} \to GF(5)$: projection on *i*th coordinate;
- \mathcal{A} is set of \mathbb{P} -matrices A with $\varphi_i(A)$ nonequivalent;
- $\mathbb{H}'_3 := \mathbb{L}_{\mathcal{A}} \mathbb{P}$.

$$\mathbb{H}_{3}' = (\mathbb{Q}(\alpha), \langle \alpha, \alpha - 1, \alpha^{2} - \alpha + 1, \frac{1}{2} \rangle).$$

•
$$\mathbb{H}'_3 = (\mathbb{Q}(\alpha), \langle \alpha, \alpha - 1, \alpha^2 - \alpha + 1, \frac{1}{2} \rangle).$$

- $\mathbb{H}'_3 = (\mathbb{Q}(\alpha), \langle \alpha, \alpha 1, \alpha^2 \alpha + 1, \frac{1}{2} \rangle).$
- $\mathbb{D} := (\mathbb{Q}, \langle -1, \frac{1}{2} \rangle)$ is induced sub-partial field. \mathbb{D} -confiners:

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1/2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

- $\mathbb{H}'_3 = (\mathbb{Q}(\alpha), \langle \alpha, \alpha 1, \alpha^2 \alpha + 1, \frac{1}{2} \rangle).$
- $\mathbb{D}:=(\mathbb{Q},\langle -1,\frac{1}{2}\rangle)$ is induced sub-partial field. \mathbb{D} -confiners:

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1/2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

ullet Consequence: matrices in ${\mathcal A}$ representable over

$$\mathbb{H}_3 := (\mathbb{Q}(\alpha), \langle \alpha, \alpha - 1, \alpha^2 - \alpha + 1 \rangle).$$

• Homomorphism to every field with an x that is no root of α , $\alpha - 1$, $\alpha^2 - \alpha + 1$.

(iii) $k \ge 4 \Rightarrow M$ is not binary and not ternary.

$$(iv) \ k \ge 5 \Rightarrow k = 6.$$

$$\mathbb{H}_4 := (\mathbb{Q}(\alpha, \beta), \langle \alpha, \beta, \alpha - 1, \beta - 1, \alpha\beta - 1, \alpha + \beta - 2\alpha\beta \rangle).$$

$$\mathbb{H}_5 := (\mathbb{Q}(\alpha, \beta, \gamma), \langle \alpha, \beta, \gamma, \alpha - 1, \beta - 1, \gamma - 1, \alpha - \gamma, \gamma - \alpha\beta, (1 - \gamma) - (1 - \alpha)\beta \rangle).$$

Main observation: six homomorphisms $\mathbb{H}_5 \to GF(5)$.

Corollaries of Confinement Theorem:

Whittle's Stabilizer Theorem;

Corollaries of Confinement Theorem:

- Whittle's Stabilizer Theorem;
- Settlement Theorem: algebraic analog of Free Expansions [Geelen et al. 2002];

More results

Corollaries of Confinement Theorem:

- Whittle's Stabilizer Theorem;
- Settlement Theorem: algebraic analog of Free Expansions [Geelen et al. 2002];
- Whittle's characterization of ternary matroids:

Theorem 8 (Whittle 1997). *M 3-connected matroid representable over* GF(3) *and over* \mathbb{F} *not of characteristic 3. Then at least one of these is true:*

- (i) M is dyadic;
- (ii) M is sixth-roots-of-unity.

Corollaries of Confinement Theorem:

- Whittle's Stabilizer Theorem;
- Settlement Theorem: algebraic analog of Free Expansions [Geelen et al. 2002];
- Whittle's characterization of ternary matroids:

Theorem 8 (Whittle 1997). *M 3-connected matroid representable over* GF(3) *and over* \mathbb{F} *not of characteristic 3. Then at least one of these is true:*

- (i) M is dyadic;
- (ii) M is sixth-roots-of-unity.

Proof. Consider $\mathbb{P} := GF(3) \otimes \mathbb{F}$, and \mathbb{P} -matrix A. Then

 $\widetilde{F}:=\{\widetilde{p}\mid p\in\mathcal{F}(\mathbb{P})\}$ set of symbols, I ideal in $\mathbb{Z}[\widetilde{F}]$ generated by

(i)
$$\widetilde{0} - 0$$
; $\widetilde{1} - 1$;

$$(ii)$$
 $\widetilde{-1} + 1$ if $-1 \in \mathcal{F}(\mathbb{P})$;

(iii)
$$\widetilde{p} + \widetilde{q} - 1$$
, where $p, q \in \mathcal{F}(\mathbb{P}), p + q = 1$;

(iv)
$$\widetilde{p}\widetilde{q} - 1$$
, where $p, q \in \mathcal{F}(\mathbb{P})$, $pq = 1$;

(v)
$$\widetilde{p}\widetilde{q}\widetilde{r} - 1$$
, where $p, q, r \in Cr(A)$, $pqr = 1$, and

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & p & q^{-1} \end{bmatrix} \preceq A.$$

Theorem 9.
$$M([I|A])$$
 is representable over $\mathbb{L}_A\mathbb{P} = (\mathbb{Z}[\widetilde{F}]/I, \langle \widetilde{F} \rangle)$.

(iii) $\widetilde{p} + \widetilde{q} - 1$, where $p, q \in \mathcal{F}(\mathbb{P})$, p + q = 1; (iv) $\widetilde{p}\widetilde{q} - 1$, where $p, q \in \mathcal{F}(\mathbb{P})$, pq = 1;

Claim 10.

$$\widetilde{F} = \{0, 1\} \cup \left\{\alpha, 1 - \alpha, \frac{1}{1 - \alpha'}, \frac{\alpha}{\alpha - 1'}, \frac{\alpha - 1}{\alpha'}, \frac{1}{\alpha}\right\} \cup \left\{\beta, 1 - \beta, \frac{1}{1 - \beta'}, \frac{\beta}{\beta - 1'}, \frac{\beta - 1}{\beta'}, \frac{1}{\beta}\right\} \cup \cdots$$

(iii) $\widetilde{p} + \widetilde{q} - 1$, where $p, q \in \mathcal{F}(\mathbb{P}), p + q = 1$;

(iv) $\widetilde{p}\widetilde{q} - 1$, where $p, q \in \mathcal{F}(\mathbb{P})$, pq = 1; Claim 10.

$$\widetilde{F} = \{0, 1\} \cup \left\{\alpha, 1 - \alpha, \frac{1}{1 - \alpha'}, \frac{\alpha}{\alpha - 1'}, \frac{\alpha - 1}{\alpha'}, \frac{1}{\alpha}\right\} \cup \left\{\beta, 1 - \beta, \frac{1}{1 - \beta'}, \frac{\beta}{\beta - 1'}, \frac{\beta - 1}{\beta'}, \frac{1}{\beta}\right\} \cup \cdots$$

Need to show:

- Relations within a set yield dyadic or $\sqrt[8]{1}$
- Only one such set needed

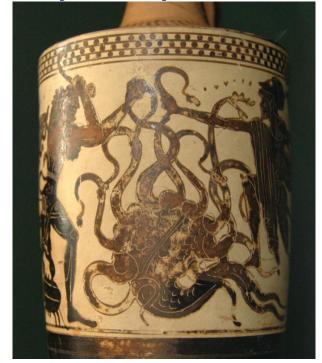
Question 11. Can we find the forbidden minors for GF(5)?

Conjecture 12. If N is 3-connected, with universal partial field \mathbb{P}_N , then N stabilizes the \mathbb{P}_N -representable matroids.

Question 13. Can we classify the universal partial fields of other classes of matroids?

First candidate: golden ratio matroids, i.e. those representable over $GF(4) \otimes GF(5)$.

Thank you for your attention!



- Lifts: arXiv:0804.3263
- Confinement: arXiv:0806.4487

