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Minors of matrices

Let A be an X x Y matrix. A minor of A is a matrix
obtained by

e Scaling rows and columns;
e Deleting rows and columns (notation: A — x);

e Pivoting on a nonzero entry:
y Y X Y’

_x|alb y a1 a b _ AXY
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Minors of matrices

Let A be an X x Y matrix. A minor of A is a matrix
obtained by

e Scaling rows and columns;

e Deleting rows and columns (notation: A — x);

e Pivoting on a nonzero entry:
y Y X Y’
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Correspond with minors of matroid M([I|A]).
X Y

1 0

A
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Previously...

e A partial field P is a pair (0, G) of a ring and a
group, such that

—-1eGCO*.

Elements of P are elements of GU {0}.

e A matrix A over O is a P-matrix if det(B) € P for
all square submatrices of A.
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Previously...

Let P; := (01, G1) and Py := (0>, G>).
o :P1 — Py Iis homomorphism if
-—o(1)=1
-o(pg) =e(p)e(q)

-If p+q€Pthen ¢(p)+¢(q)=0¢(p+q)
Example: ring homomorphism with ¢(G1) € Go.

* M(A) = M(p(A))
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Previously...

o If P1 =(01, G1) and P = (03, G2) then
P1® P> :=(071 x 0y, G1 X G3).

addition, multiplication componentwise.
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Previously...

o If P1 =(01, G1) and P = (03, G2) then
P1® P> :=(071 x 0y, G1 X G3).

addition, multiplication componentwise.
o If M =M([I|A1]) = M([I|A2]), then

M= M([I|A1®A2]).
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Previously...

o If P1 =(01, G1) and P = (03, G2) then
P1® P> :=(071 x 0y, G1 X G3).

addition, multiplication componentwise.
o If M =M([I|A1]) = M([I|A2]), then

M= M([I|A1®A2]).

(1p)°(1p:) = (@D o)
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Previously...

Theorem 1 (Tutte 1965). Let M be a matroid. The
following are equivalent:

e M is representable over GF(2) and GF(3)

e M is representable over R by a totally unimodular
matrix

e M is representable over every field
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Previously...

Theorem 1 (Tutte 1965). Let M be a matroid. The
following are equivalent:

e M is representable over GF(2) and GF(3)

e M is representable over R by a totally unimodular
matrix

e M is representable over every field

Proof. Consider partial field GF(2) ® GF(3). Elements
are (0,0),(1,1),(1,-1). Find bijective homomor-
phism

¢:GF(2)®GF(3)—(Z,{-1,1}).
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Theorem 1’ (Tutte 1965). Let M be a matroid. The
following are equivalent:

e M s representable over GF(2) and field not of
characteristic 2

e M is representable over R by a totally unimodular
matrix
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Theorem 1’ (Tutte 1965). Let M be a matroid. The
following are equivalent:

e M s representable over GF(2) and field not of
characteristic 2

e M is representable over R by a totally unimodular
matrix

Proof. Consider partial field GF(2) ® F. Elements are
(0,0) and (1, x) where x e F*. Then ... ]

Problem: GF(2)®TF is too big!
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Fundamental elements

Definition 2. Fundamental elements of P
F(P)={peP|1l-peP}.

Theorem 3. M is P-representable < M is P[F(P)]-
representable.
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Theorem 1’ (Tutte 1965). Let M be a matroid. The
following are equivalent:

e M s representable over GF(2) and field not of
characteristic 2

e M is representable over R by a totally unimodular
matrix

Proof. Consider partial field GF(2) ® F. Elements are
(0,0) and (1,x) where xeF*. Then ...

F(IP) - {toJOL(M)S U (159 |||)~(Ijx)eﬁ)}

S (l)l) 057 s

PLFP] = ¢ -0 ], hom. E
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Confinement Theorem

Theorem 4. P’ C P induced. B 3-connected scaled
P’-matrix. A 3-connected P-matrix with submatrix B.
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Confinement Theorem

Theorem 4. P’ C P induced. B 3-connected scaled
P’-matrix. A 3-connected P-matrix with submatrix B.
Exactly one of these is true:

(i) A is a scaled P’-matrix;
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Confinement Theorem

Theorem 4. P’ C P induced. B 3-connected scaled
P’-matrix. A 3-connected P-matrix with submatrix B.
Exactly one of these is true:

(i) A is a scaled P’-matrix;
(ii) A has 3-connected X x Y-minor A’ such that
e A’ is not a scaled P’-matrix.
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Confinement Theorem

Theorem 4. P’ C P induced. B 3-connected scaled
P’-matrix. A 3-connected P-matrix with submatrix B.
Exactly one of these is true:

(i) A is a scaled P’-matrix;

(ii) A has 3-connected X x Y-minor A’ such that

e A’ is not a scaled P’-matrix.
e Bisisomorphic to A’—U, with |[UnX| <1, |UnY| <
1;
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Confinement Theorem

Theorem 4. P’ C P induced. B 3-connected scaled
P’-matrix. A 3-connected P-matrix with submatrix B.
Exactly one of these is true:

(i) A is a scaled P’-matrix;
(ii) A has 3-connected X x Y-minor A’ such that

e A’ is not a scaled P’-matrix.

e Bisisomorphic to A’—U, with |[UnX| <1, |UnY| <
1;

o If B isisomorphic to A’—{x, y} then at least one
of A’ — x,A’ —y is 3-connected.
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Stabilizer Theorem

Matroid N stabilizes M over P if the representation of
N determines uniquely that of M.
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Stabilizer Theorem

Matroid N stabilizes M over P if the representation of
N determines uniquely that of M.

Theorem 5 (Stabilizer Theorem, Whittle 1999). M, N
3-connected P-representable matroids, N < M. Ex-
actly one of the following is true:

(i) N stabilizes M;
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Stabilizer Theorem

Matroid N stabilizes M over P if the representation of
N determines uniquely that of M.

Theorem 5 (Stabilizer Theorem, Whittle 1999). M, N
3-connected P-representable matroids, N < M. Ex-
actly one of the following is true:

(i) N stabilizes M;

(ii) M has 3-connected minor M’ such that
e N does not stabilize M’;
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Stabilizer Theorem

Matroid N stabilizes M over P if the representation of
N determines uniquely that of M.

Theorem 5 (Stabilizer Theorem, Whittle 1999). M, N
3-connected P-representable matroids, N < M. Ex-
actly one of the following is true:

(i) N stabilizes M;

(ii) M has 3-connected minor M’ such that

e N does not stabilize M’;
o N is isomorphic to M/x, M’\y, or M/x\y;
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Stabilizer Theorem

Matroid N stabilizes M over P if the representation of
N determines uniquely that of M.

Theorem 5 (Stabilizer Theorem, Whittle 1999). M, N
3-connected P-representable matroids, N < M. Ex-
actly one of the following is true:

(i) N stabilizes M;

(ii) M has 3-connected minor M’ such that

o N does not stabilize M’;

o N is isomorphic to M/x, M’\y, or M/x\y;

olf N = M/x\y then one of M/x,M’\y is 3-
connected.
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Stabilizer Theorem

Matroid N stabilizes M over P if the representation of
N determines uniquely that of M.

Corollary 5 (Stabilizer Theorem, Whittle 1999).
M, N 3-connected P-representable matroids, N < M.
Exactly one of the following is true:
(i) N stabilizes M;
(ii) M has 3-connected minor M’ such that

o N does not stabilize M’;

o N is isomorphic to M/x, M’\y, or M/x\y;

olf N = M/x\y then one of M/x,M’\y is 3-

connected.
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Stabilizer Theorem

Corollary 5. M, N 3-connected P-representable ma-
troids, N X M. Exactly one of the following is true:
(i) N stabilizes M;
(i) M has 3-connected minor M’ such that

o N does not stabilize M’;

o N is isomorphic to M/x, M’\y, or M/x\y;

o N=M/x\y = M’/x or M’ \y /s 3 connected
P~§ VD@C \P P @ ( >‘ ,x, ¢
— APPIS conf thw. fo e,acl\ [P rep
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Quinary matroids

Theorem 6. Let M be a 3-connected matroid with at
least k inequivalent representations over GF(5).

(i) Kk > 2 = M representable over C, GF(p?) for all
primes p > 3, GF(p) when p=1 mod 4.
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Quinary matroids
Theorem 6. Let M be a 3-connected matroid with at
least k inequivalent representations over GF(5).

(i) Kk > 2 = M representable over C, GF(p?) for all
primes p > 3, GF(p) when p=1 mod 4.

(ii) kK > 3 = M representable over every field with at
least five elements.
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Quinary matroids
Theorem 6. Let M be a 3-connected matroid with at
least k inequivalent representations over GF(5).

(i) Kk > 2 = M representable over C, GF(p?) for all
primes p > 3, GF(p) when p=1 mod 4.

(ii) kK > 3 = M representable over every field with at
least five elements.

(iii) kK > 4 = M is not binary and not ternary.
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Quinary matroids
Theorem 6. Let M be a 3-connected matroid with at
least k inequivalent representations over GF(5).

(i) Kk > 2 = M representable over C, GF(p?) for all
primes p > 3, GF(p) when p=1 mod 4.

(ii) kK > 3 = M representable over every field with at
least five elements.

(iii) kK > 4 = M is not binary and not ternary.
(iv) k >5 =k =6.

/ department of mathematics and computer science



Quinary matroids

Theorem 6. Let M be a 3-connected matroid with at
least k inequivalent representations over GF(5).

(i) Kk > 2 = M representable over C, GF(p?) for all
primes p > 3, GF(p) when p=1 mod 4.

(ii) kK > 3 = M representable over every field with at
least five elements.

(iii) kK > 4 = M is not binary and not ternary.
(iv) k >5 = k = 6.
Ingredients of proof:
e Universal partial fields (for binary, ternary cases);
e Lift Theorem;
e Confinement Theorem.
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Lift Theorem

F:={p|peF(P)} set of symbols, I ideal in Z[F]
generated by
() 0—0; I-1;

(i)=1+1if-1€ F(P);

(iv) pg — 1, where p, g € F(P), pq = 1;

(v) pgr— 1, where p,q,r € Cr(A), pgr=1, and

) —

(il p+qg—1, where p,qg e F(P), p+qg =1;
)
)
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Lift Theorem

F:={p|pe F(P)} set of symbols, I ideal in Z[F]
generated by

()0—-0:1-1:
—1+1if -1 e F(P):

(i

(iv) pg — 1, where p, g € F(P), pq = 1;

(v) pgr— 1, where p,q,r € Cr(A), pgr=1, and

) —

(il p+qg—1, where p,qg e F(P), p+qg =1;
)
)

Theorem 7. For A € A, M([I|A]) is representable
over L P = (Z[F1/I, (F)).
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Quinary matroids (2)

(i) k > 2 = M representable over C, GF(p?) for all
primes p > 3, GF(p) when p=1 mod 4.
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Quinary matroids (2)

(i) k > 2 = M representable over C, GF(p?) for all
primes p > 3, GF(p) when p=1 mod 4.

o P := GF(5) ® GF(5);
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Quinary matroids (2)

(i) k > 2 = M representable over C, GF(p?) for all
primes p > 3, GF(p) when p=1 mod 4.

o P := GF(5) ® GF(5);
e @;:P — GF(5): projection on ith coordinate;
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Quinary matroids (2)

(i) k > 2 = M representable over C, GF(p?) for all
primes p > 3, GF(p) when p=1 mod 4.

o P := GF(5) ® GF(5);
e @;:P — GF(5): projection on ith coordinate;
o A is set of P-matrices A with ¢1(A) # ¢2(A);
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Quinary matroids (2)

(i) k > 2 = M representable over C, GF(p?) for all
primes p > 3, GF(p) when p=1 mod 4.

o P:=GF(5)® GF(5);

e @;:P — GF(5): projection on ith coordinate;
o A is set of P-matrices A with ¢1(A) # ¢2(A);
e Hy ;=1L 4P.
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Quinary matroids (2)

(i) k > 2 = M representable over C, GF(p?) for all
primes p > 3, GF(p) when p=1 mod 4.

o P:=GF(5)® GF(5);
e @;:P — GF(5): projection on ith coordinate;
o A is set of P-matrices A with ¢1(A) # ¢2(A);
o Hp =1 4P.

Note: A is essential.

(1,1) (1,1) (1,1)
[(1,1) (2,2) (3,3)}

Stabilizer Theorem implies these are not minors of
Ae A.
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Quinary matroids (2)

(i) k > 2 = M representable over C, GF(p?) for all
primes p > 3, GF(p) when p=1 mod 4.

o P:=GF(5)® GF(5);

e @;:P — GF(5): projection on ith coordinate;
o A is set of P-matrices A with ¢1(A) # ¢2(A);
e Hy ;=1L 4P.

Hz = (C, {4 1-10)).
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Quinary matroids (2)

(i) k > 2 = M representable over C, GF(p?) for all
primes p > 3, GF(p) when p=1 mod 4.

o P:=GF(5)® GF(5);

e @;:P — GF(5): projection on ith coordinate;
o A is set of P-matrices A with ¢1(A) # ¢2(A);
o Hp =1 4P.

Hz = (C, {4 1-10)).

FH)={0,1,-1,2,3,ii+1, %, 1-i 5, —i}.

e Result follows by considering homomorphisms.
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Quinary matroids (3)

(il) kK = 3 = M representable over every field with at
least five elements.
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Quinary matroids (3)

(il) kK = 3 = M representable over every field with at
least five elements.

oP:=GF(5)® GF(5)® GF(5);
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Quinary matroids (3)

(il) kK = 3 = M representable over every field with at
least five elements.

o P:=GF(5)®GF(5)® GF(5);
e @;: P — GF(5): projection on ith coordinate;
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Quinary matroids (3)

(il) kK = 3 = M representable over every field with at
least five elements.

o P:=GF(5)® GF(5) ® GF(5);
e @;: P — GF(5): projection on ith coordinate;
e A is set of P-matrices A with ¢;(A) nonequivalent;
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Quinary matroids (3)

(il) kK = 3 = M representable over every field with at
least five elements.

o P :=GF(5) ® GF(5) ® GF(5);

e @;: P — GF(5): projection on ith coordinate;

e A is set of P-matrices A with ¢;(A) nonequivalent;
° I]-[I’3 =L 4P.
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Quinary matroids (3)

(il) kK = 3 = M representable over every field with at
least five elements.

o P :=GF(5) ® GF(5) ® GF(5);
e @;: P — GF(5): projection on ith coordinate;
e A is set of P-matrices A with ¢;(A) nonequivalent;
° I]-[I’3 =L 4P. .
H, = (Q(a), (o, a—1,a° —a+1, 5)).
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(il) kK = 3 = M representable over every field with at
least five elements.

o H? = (Q(a), {a,
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(il) kK = 3 = M representable over every field with at
least five elements.

o H? = (Q(a), {a,

oD = (Q, (-1 ,5)) is induced sub-partial field. D-
confiners:

EEIRERvIR Y
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(il) kK = 3 = M representable over every field with at
least five elements.

o H? = (Q(a), {a,

oD = (Q, (-1 ,5)) is induced sub-partial field. D-
confiners:

11 1 1 1 1
121"|11/2)"|1 -1
e Consequence: matrices in A representable over

Hs := (Q(a), (o, a — 1, a? — a + 1)).

e Homomorphism to every field with an x that is no
rootof a,a—1, 0% —a+ 1.
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Quinary matroids (4,5,6)

(iil) kK > 4 = M is not binary and not ternary.
(iv)k >5 =k =6.

Hg :=(Q(a,B),{a,B,a—-1,6—-1, a8 -1, a+ L —2a83)).

HS F= (@(GIBIY)I (O(,,B,‘Y,O(—l,,@—l,‘y—l,o{—‘y,
Y—aB, (1-7)-(1-a)B)).

Main observation: six homomorphisms Hs — GF(5).
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More results

Corollaries of Confinement Theorem:
e Whittle’s Stabilizer Theorem:
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More results
Corollaries of Confinement Theorem:

e Whittle’s Stabilizer Theorem:

e Settlement Theorem: algebraic analog of Free Ex-
pansions [Geelen et al. 2002];
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More results

Corollaries of Confinement Theorem:
e Whittle’s Stabilizer Theorem:

e Settlement Theorem: algebraic analog of Free Ex-
pansions [Geelen et al. 2002];

e Whittle’s characterization of ternary matroids:
Theorem 8 (Whittle 1997). M 3-connected ma-

troid representable over GF(3) and over F not of
characteristic 3. Then at least one of these is true:

(i) M is dyadic;
(i) M is sixth-roots-of-unity.
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Corollaries of Confinement Theorem:

e Whittle’s Stabilizer Theorem:

e Settlement Theorem: algebraic analog of Free Ex-
pansions [Geelen et al. 2002];

e Whittle’s characterization of ternary matroids:

Theorem 8 (Whittle 1997). M 3-connected ma-
troid representable over GF(3) and over F not of
characteristic 3. Then at least one of these is true:

(i) M is dyadic;
(i) M is sixth-roots-of-unity.

Proof. Consider P := GF(3)®T[, and P-matrix A. Then

TTTTT ische Universiteit
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Lift Theorem

F:={p|peF(P)} set of symbols, I ideal in Z[F]
generated by
() 0—0; I-1;

(i)=1+1if-1€ F(P);

(iv) pg — 1, where p, g € F(P), pq = 1;

(v) pgr— 1, where p,q,r € Cr(A), pgr=1, and

) —

(il p+qg—1, where p,qg e F(P), p+qg =1;
)
)

1| XA
oo
Theorem 9. M([I|A]) is representable over LaP =

(Z[FV/L (F)).
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Partitioning F

(il p+q—1, wherep,ge F(P), p+qg=1;
(iv) pg — 1, where p, g € F(P), pg = 1;
Claim 10.

1 a o-—-11
W
l1—-a a-1 a o

={0,1}L-J{or,1—or, , , , —

1 B8 B-11
11—
{ﬁ Bl BB-1 B .3}
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Partitioning F

(il p+q—1, wherep,ge F(P), p+qg=1;
(iv) pg — 1, where p, g € F(P), pg = 1;
Claim 10.

1 a o-—-11
W
l1—-a a-1 a o

?={O,1}u{a,1—or, ) , -

1 B8 B-11
11—
{ﬁ ﬁl BB-1 B .3}

Need to show:
o Relations within a set yield dyadic or ¥1
e Only one such set needed
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Questions, open problems

Question 11. Can we find the forbidden minors for
GF(5)?

Conjecture 12./f N is 3-connected, with uni-
versal partial field Py, then N stabilizes the Py-
representable matroids.

Question 13. Can we classify the universal partial
fields of other classes of matroids?

First candidate: golden ratio matroids, i.e. those
representable over GF(4) ® GF(5).
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The End

e Lifts: arXiv:0804.3263
e Confinement: arXiv:0806.4487
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http://arxiv.org/abs/0804.3263
http://arxiv.org/abs/0806.4487

