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Let A be an X × Y matrix. A minor of A is a matrix
obtained by

• Scaling rows and columns;

• Deleting rows and columns (notation: A− );

• Pivoting on a nonzero entry:

A =
�

y Y′

  b
X′ c D

�

→
�

 Y′

y −1 −1b
X′ −−1c D− −1cb

�

= Ay

Minors of matrices
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Let A be an X × Y matrix. A minor of A is a matrix
obtained by

• Scaling rows and columns;

• Deleting rows and columns (notation: A− );

• Pivoting on a nonzero entry:

A =
�

y Y′

  b
X′ c D

�

→
�

 Y′

y −1 −1b
X′ −−1c D− −1cb

�

= Ay.

Correspond with minors of matroid M([|A]).






X Y

1 0
... A

0 1






↔







Y

X A







Minors of matrices
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• A partial field P is a pair (O,G) of a ring and a
group, such that

−1 ∈ G ⊆ O∗.

Elements of P are elements of G ∪ {0}.

• A matrix A over O is a P-matrix if det(B) ∈ P for
all square submatrices of A.

Previously...
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Let P1 := (O1,G1) and P2 := (O2,G2).

• φ : P1→ P2 is homomorphism if

– φ(1) = 1
– φ(pq) = φ(p)φ(q)
– If p+ q ∈ P then φ(p) + φ(q) = φ(p+ q)

Example: ring homomorphism with φ(G1) ⊆ G2.

• M(A) = M(φ(A))

Previously...
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• If P1 = (O1,G1) and P2 = (O2,G2) then

P1 ⊗ P2 := (O1 ×O2,G1 ×G2).

addition, multiplication componentwise.

Previously...
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• If P1 = (O1,G1) and P2 = (O2,G2) then

P1 ⊗ P2 := (O1 ×O2,G1 ×G2).

addition, multiplication componentwise.

• If M = M([|A1]) = M([|A2]), then

M = M([|A1 ⊗ A2]).

Previously...
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• If P1 = (O1,G1) and P2 = (O2,G2) then

P1 ⊗ P2 := (O1 ×O2,G1 ×G2).

addition, multiplication componentwise.

• If M = M([|A1]) = M([|A2]), then

M = M([|A1 ⊗ A2]).

�

1 1
1 p1

�

⊗
�

1 1
1 p2

�

=
�

(1,1) (1,1)
(1,1) (p1, p2)

�

Previously...
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Theorem 1 (Tutte 1965). Let M be a matroid. The
following are equivalent:

• M is representable over GF(2) and GF(3)

• M is representable over R by a totally unimodular
matrix

• M is representable over every field

Previously...
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Theorem 1 (Tutte 1965). Let M be a matroid. The
following are equivalent:

• M is representable over GF(2) and GF(3)

• M is representable over R by a totally unimodular
matrix

• M is representable over every field

Proof. Consider partial field GF(2)⊗GF(3). Elements
are (0,0), (1,1), (1,−1). Find bijective homomor-
phism

φ : GF(2)⊗GF(3)→ (Z,{−1,1}).

Previously...
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Theorem 1’ (Tutte 1965). Let M be a matroid. The
following are equivalent:

• M is representable over GF(2) and field not of
characteristic 2

• M is representable over R by a totally unimodular
matrix

Today
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Theorem 1’ (Tutte 1965). Let M be a matroid. The
following are equivalent:

• M is representable over GF(2) and field not of
characteristic 2

• M is representable over R by a totally unimodular
matrix

Proof. Consider partial field GF(2)⊗ F. Elements are
(0,0) and (1, ) where  ∈ F∗. Then ...

Problem: GF(2)⊗ F is too big!

Today
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Definition 2. Fundamental elements of P

F(P) := {p ∈ P | 1− p ∈ P}.

Theorem 3. M is P-representable ⇔ M is P[F(P)]-
representable.

Fundamental elements
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Theorem 1’ (Tutte 1965). Let M be a matroid. The
following are equivalent:

• M is representable over GF(2) and field not of
characteristic 2

• M is representable over R by a totally unimodular
matrix

Proof. Consider partial field GF(2)⊗ F. Elements are
(0,0) and (1, ) where  ∈ F∗. Then ...

Today
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Theorem 4. P′ ⊆ P induced. B 3-connected scaled
P′-matrix. A 3-connected P-matrix with submatrix B.

Confinement Theorem
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Theorem 4. P′ ⊆ P induced. B 3-connected scaled
P′-matrix. A 3-connected P-matrix with submatrix B.
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(ii) A has 3-connected X × Y-minor A′ such that

• A′ is not a scaled P′-matrix.
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Theorem 4. P′ ⊆ P induced. B 3-connected scaled
P′-matrix. A 3-connected P-matrix with submatrix B.
Exactly one of these is true:

(i) A is a scaled P′-matrix;

(ii) A has 3-connected X × Y-minor A′ such that

• A′ is not a scaled P′-matrix.
• B is isomorphic to A′−U, with |U∩X| ≤ 1, |U∩Y | ≤
1;

Confinement Theorem
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Theorem 4. P′ ⊆ P induced. B 3-connected scaled
P′-matrix. A 3-connected P-matrix with submatrix B.
Exactly one of these is true:

(i) A is a scaled P′-matrix;

(ii) A has 3-connected X × Y-minor A′ such that

• A′ is not a scaled P′-matrix.
• B is isomorphic to A′−U, with |U∩X| ≤ 1, |U∩Y | ≤
1;

• If B is isomorphic to A′−{, y} then at least one
of A′ − ,A′ − y is 3-connected.

Confinement Theorem
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Matroid N stabilizes M over P if the representation of
N determines uniquely that of M.
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Theorem 5 (Stabilizer Theorem, Whittle 1999).M,N
3-connected P-representable matroids, N � M. Ex-
actly one of the following is true:

(i) N stabilizes M;

(ii) M has 3-connected minor M′ such that

• N does not stabilize M′;
• N is isomorphic to M′/, M′\y, or M′/\y;
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connected.
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Matroid N stabilizes M over P if the representation of
N determines uniquely that of M.

Corollary 5 (Stabilizer Theorem, Whittle 1999).
M,N 3-connected P-representable matroids, N � M.
Exactly one of the following is true:

(i) N stabilizes M;

(ii) M has 3-connected minor M′ such that

• N does not stabilize M′;
• N is isomorphic to M′/, M′\y, or M′/\y;
• If N ∼= M′/ \ y then one of M′/,M′ \ y is 3-

connected.
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Corollary 5. M,N 3-connected P-representable ma-
troids, N � M. Exactly one of the following is true:

(i) N stabilizes M;

(ii) M has 3-connected minor M′ such that

• N does not stabilize M′;
• N is isomorphic to M′/, M′\y, or M′/\y;
• N ∼= M′/\y⇒ M′/ or M′\y is 3-connected.

Stabilizer Theorem
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Theorem 6. Let M be a 3-connected matroid with at
least k inequivalent representations over GF(5).

(i) k ≥ 2 ⇒ M representable over C, GF(p2) for all
primes p ≥ 3, GF(p) when p ≡ 1 mod 4.

Quinary matroids
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Theorem 6. Let M be a 3-connected matroid with at
least k inequivalent representations over GF(5).

(i) k ≥ 2 ⇒ M representable over C, GF(p2) for all
primes p ≥ 3, GF(p) when p ≡ 1 mod 4.

(ii) k ≥ 3 ⇒ M representable over every field with at
least five elements.

(iii) k ≥ 4⇒ M is not binary and not ternary.

(iv) k ≥ 5⇒ k = 6.

Ingredients of proof:

• Universal partial fields (for binary, ternary cases);

• Lift Theorem;

• Confinement Theorem.

Quinary matroids
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eF := {ep | p ∈ F(P)} set of symbols,  ideal in Z[eF]
generated by

(i) e0− 0; e1− 1;

(ii)g−1+ 1 if −1 ∈ F(P);
(iii) ep+ eq− 1, where p, q ∈ F(P), p+ q = 1;

(iv) epeq− 1, where p, q ∈ F(P), pq = 1;

(v) epeqer − 1, where p, q, r ∈ Cr(A), pqr = 1, and
�

1 1 1
1 p q−1

�

� A ∈ A.

Lift Theorem
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eF := {ep | p ∈ F(P)} set of symbols,  ideal in Z[eF]
generated by

(i) e0− 0; e1− 1;

(ii)g−1+ 1 if −1 ∈ F(P);
(iii) ep+ eq− 1, where p, q ∈ F(P), p+ q = 1;

(iv) epeq− 1, where p, q ∈ F(P), pq = 1;

(v) epeqer − 1, where p, q, r ∈ Cr(A), pqr = 1, and
�

1 1 1
1 p q−1

�

� A ∈ A.

Theorem 7. For A ∈ A, M([|A]) is representable
over LAP = (Z[eF]/ , 〈eF〉).

Lift Theorem
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(i) k ≥ 2 ⇒ M representable over C, GF(p2) for all
primes p ≥ 3, GF(p) when p ≡ 1 mod 4.

Quinary matroids (2)
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• P := GF(5)⊗GF(5);
• φ : P→ GF(5): projection on th coordinate;

• A is set of P-matrices A with φ1(A) 6∼ φ2(A);
• H2 := LAP.
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(i) k ≥ 2 ⇒ M representable over C, GF(p2) for all
primes p ≥ 3, GF(p) when p ≡ 1 mod 4.

• P := GF(5)⊗GF(5);
• φ : P→ GF(5): projection on th coordinate;

• A is set of P-matrices A with φ1(A) 6∼ φ2(A);
• H2 := LAP.

Note: A is essential.
�

(1,1) (1,1) (1,1)
(1,1) (2,2) (3,3)

�

Stabilizer Theorem implies these are not minors of
A ∈ A.

Quinary matroids (2)
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(i) k ≥ 2 ⇒ M representable over C, GF(p2) for all
primes p ≥ 3, GF(p) when p ≡ 1 mod 4.

• P := GF(5)⊗GF(5);
• φ : P→ GF(5): projection on th coordinate;

• A is set of P-matrices A with φ1(A) 6∼ φ2(A);
• H2 := LAP.

H2 = (C, 〈,1− 〉).

Quinary matroids (2)
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(i) k ≥ 2 ⇒ M representable over C, GF(p2) for all
primes p ≥ 3, GF(p) when p ≡ 1 mod 4.

• P := GF(5)⊗GF(5);
• φ : P→ GF(5): projection on th coordinate;

• A is set of P-matrices A with φ1(A) 6∼ φ2(A);
• H2 := LAP.

H2 = (C, 〈,1− 〉).

F(H2) =
n

0,1,−1,2, 12, , + 1,
+1
2 ,1− , 1−2 ,−

o

.

• Result follows by considering homomorphisms.

Quinary matroids (2)



15/21

/ department of mathematics and computer science

(ii) k ≥ 3 ⇒ M representable over every field with at
least five elements.

Quinary matroids (3)
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(ii) k ≥ 3 ⇒ M representable over every field with at
least five elements.

• P := GF(5)⊗GF(5)⊗GF(5);
• φ : P→ GF(5): projection on th coordinate;

• A is set of P-matrices A with φ(A) nonequivalent;

• H′3 := LAP.

Quinary matroids (3)
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(ii) k ≥ 3 ⇒ M representable over every field with at
least five elements.

• P := GF(5)⊗GF(5)⊗GF(5);
• φ : P→ GF(5): projection on th coordinate;

• A is set of P-matrices A with φ(A) nonequivalent;

• H′3 := LAP.

H′3 = (Q(α), 〈α,α − 1, α
2 − α + 1,

1

2
〉).

Quinary matroids (3)
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(ii) k ≥ 3 ⇒ M representable over every field with at
least five elements.

• H′3 = (Q(α), 〈α,α − 1, α
2 − α + 1, 12〉).

Quinary matroids (3)
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(ii) k ≥ 3 ⇒ M representable over every field with at
least five elements.

• H′3 = (Q(α), 〈α,α − 1, α
2 − α + 1, 12〉).

• D := (Q, 〈−1, 12〉) is induced sub-partial field. D-
confiners:

�

1 1
1 2

�

,
�

1 1
1 1/2

�

,
�

1 1
1 −1

�

Quinary matroids (3)



15/21

/ department of mathematics and computer science

(ii) k ≥ 3 ⇒ M representable over every field with at
least five elements.

• H′3 = (Q(α), 〈α,α − 1, α
2 − α + 1, 12〉).

• D := (Q, 〈−1, 12〉) is induced sub-partial field. D-
confiners:

�

1 1
1 2

�

,
�

1 1
1 1/2

�

,
�

1 1
1 −1

�

• Consequence: matrices in A representable over

H3 := (Q(α), 〈α,α − 1, α2 − α + 1〉).

• Homomorphism to every field with an  that is no
root of α,α − 1, α2 − α + 1.

Quinary matroids (3)
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(iii) k ≥ 4⇒ M is not binary and not ternary.

(iv) k ≥ 5⇒ k = 6.

H4 := (Q(α, β), 〈α, β, α − 1, β− 1, αβ− 1, α + β− 2αβ〉).

H5 := (Q(α, β, γ), 〈α, β, γ, α − 1, β− 1, γ− 1, α − γ,
γ− αβ, (1− γ)− (1− α)β〉).

Main observation: six homomorphisms H5→ GF(5).

Quinary matroids (4,5,6)
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Corollaries of Confinement Theorem:

• Whittle’s Stabilizer Theorem;

• Settlement Theorem: algebraic analog of Free Ex-
pansions [Geelen et al. 2002];

• Whittle’s characterization of ternary matroids:

Theorem 8 (Whittle 1997). M 3-connected ma-
troid representable over GF(3) and over F not of
characteristic 3. Then at least one of these is true:

(i) M is dyadic;
(ii) M is sixth-roots-of-unity.

Proof. Consider P := GF(3)⊗F, and P-matrix A. Then
...

More results
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eF := {ep | p ∈ F(P)} set of symbols,  ideal in Z[eF]
generated by

(i) e0− 0; e1− 1;

(ii)g−1+ 1 if −1 ∈ F(P);
(iii) ep+ eq− 1, where p, q ∈ F(P), p+ q = 1;

(iv) epeq− 1, where p, q ∈ F(P), pq = 1;

(v) epeqer − 1, where p, q, r ∈ Cr(A), pqr = 1, and
�

1 1 1
1 p q−1

�

� A.

Theorem 9. M([|A]) is representable over LAP =
(Z[eF]/ , 〈eF〉).

Lift Theorem
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(iii) ep+ eq− 1, where p, q ∈ F(P), p+ q = 1;

(iv) epeq− 1, where p, q ∈ F(P), pq = 1;

Claim 10.

eF = {0,1} ·∪
¨

α,1− α,
1

1− α
,

α

α − 1
,
α − 1
α

,
1

α

«

·∪
¨

β,1− β,
1

1− β
,

β

β− 1
,
β− 1
β

,
1

β

«

·∪ · · ·

Partitioning eF
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(iii) ep+ eq− 1, where p, q ∈ F(P), p+ q = 1;

(iv) epeq− 1, where p, q ∈ F(P), pq = 1;

Claim 10.

eF = {0,1} ·∪
¨

α,1− α,
1

1− α
,

α

α − 1
,
α − 1
α

,
1

α

«

·∪
¨

β,1− β,
1

1− β
,

β

β− 1
,
β− 1
β

,
1

β

«

·∪ · · ·

Need to show:

• Relations within a set yield dyadic or 6p1
• Only one such set needed

Partitioning eF
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Question 11. Can we find the forbidden minors for
GF(5)?

Conjecture 12. If N is 3-connected, with uni-
versal partial field PN, then N stabilizes the PN-
representable matroids.

Question 13. Can we classify the universal partial
fields of other classes of matroids?

First candidate: golden ratio matroids, i.e. those
representable over GF(4)⊗GF(5).

Questions, open problems



21/21

/ department of mathematics and computer science

Thank you for your attention!

• Lifts: arXiv:0804.3263

• Confinement: arXiv:0806.4487

The End

http://arxiv.org/abs/0804.3263
http://arxiv.org/abs/0806.4487

