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Projective geometry

Projective n-space:
» “points” are 1-dimensional subspaces of F"+1;
e “lines” are 2-dimensional subspaces;

Through every 2 points is a unique line; every 2
coplanar lines meet in a unique point.
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Projective geometry

e Two subspaces are “incident” if one is contained
in the other.

 Projective transformations: preserve incidences.

e Projective transformations are invertible linear
transformations.

e Projective transformations do not preserve an-
gles, distances, “between-ness”.

P
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Cross-ratio

Cross-ratio: quantity that is preserved under linear
transformations.

A B C
AC-DB

CB-AD

Scale so that C = A+ B; D = aA+ B. Then
Cr(A,B,C,D) =a.

Cr(A,B,C,D) :=

/ department of mathematics and computer science



Cross-ratio

Cross-ratio: quantity that is preserved under linear
transformations.

A B C
AC-DB

CB-AD

Scale so that C = A+ B; D = aA+ B. Then
Cr(A,B,C,D) =a.
Changing the order changes the cross ratio.

1 a ao-11
a,l_a, 7 ’ 7
l—-aa-1 a o

Cr(A,B,C,D) :=
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Finite configurations

What we will look at:
e Finite set E of points in projective n-space over [;

o If B is the collection of minimal spanning subsets
of a configuration E, then we call M = (E, B) a com-
binatorial geometry or matroid.

o If E is represented as the set of columns of a ma-
trix A, then we write M(A) for this matroid.

T U Techmsch eeeeeeeeeeeee
/ department of mathematics and computer science Sity of Technology



Finite configurations

What we will look at:
e Finite set E of points in projective n-space over [;

o If B is the collection of minimal spanning subsets
of a configuration E, then we call M = (E, B) a com-
binatorial geometry or matroid.

o If E is represented as the set of columns of a ma-
trix A, then we write M(A) for this matroid.

What cross-ratios can we find?
e Restriction to subsets of points;
e Projection from v € E onto orthogonal subspace.
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Minors of matrices
Let A be an X x Y matrix.
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Minors of matrices
Let A be an X x Y matrix.

X Y

. A
0 1

A minor of A is a matrix obtained by

e Scaling rows and columns;

e Deleting rows and columns (notation: A — x);

e Pivoting on a nonzero entry
y Y Y’

x[a|b] _ v a‘1 a~1ip
x| c| D x| —a”lc | D-—alch
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Cross-ratios of a matrix

A minor of A is a matrix obtained by
e Scaling rows and columns;
e Deleting rows and columns;
e Pivoting on a nonzero entry:
Notation: B < A.

Cr(A):={x| [ 1%¥] 2 A}
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Cross-ratios of a matrix

A minor of A is a matrix obtained by
e Scaling rows and columns;
e Deleting rows and columns;
e Pivoting on a nonzero entry:
Notation: B < A.

Cr(A):={x| [ 1%¥] 2 A}
Let G := (-1, Cr(A)) be the multiplicative subgroup
of F generated by {—1} U Cr(A).

Lemma 1. There exist nonsingular diagonal matri-
ces D1, D, such that every subdeterminant of D1AD>
is in G.
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Partial fields

Idea (Semple, Whittle 1996): throw away all unnec-
essary field structure!

Definition 2.

A partial field P is a pair (0O, G) of a ring and a group,
such that -1 e G C O*.

Elements of P are elements of GU {0}.
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Partial fields

Idea (Semple, Whittle 1996): throw away all unnec-
essary field structure!

Definition 2.
A partial field P is a pair (0O, G) of a ring and a group,

such that -1 e G C O*.
Elements of P are elements of GU {0}.

Addition is not always defined, but is completely de-
termined by the cross-ratios:

p+q=p(1-(~))
p
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Partial fields

Idea (Semple, Whittle 1996): throw away all unnec-
essary field structure!

Definition 2.
A partial field P is a pair (0O, G) of a ring and a group,

such that -1 e G C O*.
Elements of P are elements of GU {0}.

Addition is not always defined, but is completely de-
termined by the cross-ratios:

p+q=p(1-(~))
p

A matrix A over O is a P-matrix if det(B) € P for all
square submatrices of A.
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Open problem

Problem 3. Let P = (0, G) be a partial field.
(i) For p e P, decide if 1 — p € P;
(ii) Find {peP|1—-peP}.

(], 13>) !

sal > fo 17 33*

’D:m :01\13 one non‘}fl\/« sol:
3% 98 =)
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Open problem

Problem 3. Let P = (0, G) be a partial field.
(i) For p e P, decide if 1 — p € P;
(ii) Find {peP|1—-peP}.

Special case: O = Z[x1,...,Xxn])/I, I finitely gener-
ated, and G = (x1,...,Xn).
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Homomorphisms

Let P := (01, G1) and Py := (0>, G>).
o :P1 — Py is homomorphism if
-—o(1)=1
-9(pg) =e(p)e(q)

-Ifp+q€Pthen ¢(p)+¢(q)=9¢(p+q)
Example: ring homomorphism with ¢(G1) € Go.

e M(LIIA]) = M(o(LI|A]))
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Examples

o “Trivial” example: A is R-matrix, Cr(A) = {0, 1}.
e Then A is (up to scaling), a Ug-matrix, where Ug :=

e Also known as totally unimodular matrix
e Homomorphism to every other field!
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Examples

e “Trivial” example: A is R-matrix, Cr(A) = {0, 1}.
e Then A is (up to scaling), a Ug-matrix, where Up :

e Also known as totally unimodular matrix
e Homomorphism to every other field!

«F=R, Cr(A)={0,1,-1,2,3}.
e Then A is (up to scaling), a D-matrix, where D :
(Z[31, (-1, 2)).

e Homomorphism to every field not of characteris-
tic 2.

/ department of mathematics and computer science



Examples
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The other way round

Reqular: Ug :=(Z,{-1,1}).

Theorem 4 (Tutte 1965). Let M be a matroid. The
following are equivalent:

‘@M is representable over GF(2) and GF(3)
e M is representable over R by a totally unimodular

\U,matrix

e M is representable over every field
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Products of partial fields

o If P71 = (01, G1) and P> = (03, G3) then
P1® P> :=(071 x 03, G1 X G3).

addition, multiplication componentwise.

(030} , (>, a\ X %450

(O,OJ‘ (1.1) J (Dc,a) XY 40,
= X
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Products of partial fields

o If P71 = (01, G1) and P> = (03, G3) then
P1® P> :=(071 x 03, G1 X G3).

addition, multiplication componentwise.
o If M =M([I|A1]) = M([I|A2]), then

M= M([I|A1 ® A2]).
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Products of partial fields

o If P71 = (01, G1) and P> = (03, G3) then
P1® P> :=(071 x 03, G1 X G3).

addition, multiplication componentwise.
o If M =M([I|A1]) = M([I|A2]), then

M= M([I|A1 ® A2]).

Ga)e(im)=(E0 &)
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The other way round
Reqular: Ug :=(Z,{-1,1}).

Theorem 5 (Tutte 1965). Let M be a matroid. The
following are equivalent:

e M is representable over GF(2) and GF(3)
e M is representable over R by a totally unimodular

matrix
e M is representable over every field
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The other way round
Reqular: Ug :=(Z,{-1,1}).

Theorem 5 (Tutte 1965). Let M be a matroid. The
following are equivalent:

e M is representable over GF(2) and GF(3)

e M is representable over R by a totally unimodular
matrix

e M is representable over every field

Proof. Consider partial field GF(2) ® GF(3). Elements
are (0,0),(1,1),(1,-1). Find bijective homomor-
phism

¢:GF(2)®GF(3)—(Z,{-1,1}).
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The other way round

Dyadic: D :=(Z[3], (-1, 2)).

Theorem 6 (Whittle 1997). Let M be a matroid. The
following are equivalent:

e M js representable over GF(3) and GF(5)
M is D-representable

M is representable over every field not of charac-

teristic 2

Problem: GF(3) ® GF(5) is finite, but D =
(Z[31, (-1,2)) is infinite!
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The other way round

Dyadic: D :=(Z[3], (-1, 2)).

Theorem 6 (Whittle 1997). Let M be a matroid. The
following are equivalent:

e M js representable over GF(3) and GF(5)
e M is D-representable

e M is representable over every field not of charac-

teristic 2

Problem: GF(3) ® GF(5) is finite, but D =
(Z[31, (-1,2)) is infinite!

Cr(GF(3)® GF(5N =1 (3). (1). (
crm={ o,
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Normalization

oose basis X. A Is an X rep. matrix over [-.
e Positions of zeroes are fixed.

e G(A) is bipartite graph with vertex classes X, Y.
xy € E(G) if and only if Axy # 0.

e Suppose edges x1y1, ..., XkyYk form spanning for-
est of G(A). Let 61,...,0k € F*. Can scale rows

and columns so that Ay, = 6; for all (.

e A is normalized if, for some spanning forest T,

Axy =1 forall xy eT. I\
b J
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The Lift Theorem

A recipe
Input:
o Partial fields P, P
o Bijection T : Cr(P) — Cr(P)
o P-matrix A
Output: matrix AT with entries in P

A= O | al=
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The Lift Theorem

Theorem 7 (vZ, Pendavingh 2008). Let P, P, 1 be as
before and let A be a P-matrix. Then either

o Al is a P-matrix and M([I|A]) = M([I|AT]), or
e B' is not a P-matrix for some

Be{Hé},]lp,qur(P)}u{[ ]}
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Applications

Dyadic: D = (Z[51, (-1, 2)).

Theorem 8 (Whittle 1997). Let M be a matroid. The
following are equivalent:

(i) M is representable over GF(3) ® GF(5)
(ii) M is D-representable

(iii) M is representable over every field not of charac-

teristic 2
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Applications

Near-regular: U; ;= (Q(a), (-1, a,1 — a)).

Theorem 9 (Whittle 1997). Let M be a matroid. The
following are equivalent:

(i) M is representable over GF(3) ® GF(4) ® GF(5)
(ii) M is representable over GF(3) ® GF(8)
(iif) M is U1-representable

(iv) M is representable over every partial field with at
least 3 elements.
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Applications

Golden ratio: G := (Q(v/5), (-1, T)) where T = %(1 +
V'5) is the golden ratio, i.e. a root of x2—x—1. Then
(=1, T) are the units of the ring of integers of Q(+/'5).

Theorem 10 (Vertigan). Let M be a matroid. The
following are equivalent:

(i) M is representable over GF(4) ® GF(5);

(ii) M is G-representable;

(iii) M is representable over GF(5), over GF(p?) for all
primes p, and over GF(p) when p=+1 mod 5.
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Applications

Gaussian: Hy := (C, (i, 1 —i)), where ( is a root of
x?+1=0.

Theorem 11. Let M be a 3-connected matroid with
a Uy 5- or Uz s-minor. The following are equivalent:

(i) M has 2 inequivalent representations over GF(5);
(ii) M is Hy-representable;

(iii) M has two inequivalent representations over
GF(5), is representable over GF(p?) for all primes
p = 3, and over GF(p) when p=1 mod 4.
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Open problems

Conjecture 12. A matroid is representable over
GF(2X) for all k > 1 if and only if it is representable

over [U(lz).

Here [U(12) = (GF(2)(a), (a, 1 + a)).

Question 13. Which partial fields P are such that
whenever the set of P-representable matroids is also
representable over a field F, there exists a homo-
morphism ¢ : LP — F?

Question 14. Can more results be derived from the
Lift Theorem?
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An algebraic construction

F:={p|peF(P)} set of symbols, I ideal in Z[F]
generated by
() 0—0; 1-1;

(i)=1+1if-1€ F(P);

(iv) pg — 1, where p, g € F(P), pq = 1;

(v) pgr— 1, where p,q,r € Cr(A), pgr=1, and

) —

(il p+qg—1, where p,q e F(P), p+qg =1;
)
)
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An algebraic construction

F:={p|peF(P)} set of symbols, I ideal in Z[F]
generated by
() 0—0; 1-1;

(i)=1+1if-1€ F(P);

(iv) pg — 1, where p, g € F(P), pq = 1;

(v) pgr— 1, where p,q,r € Cr(A), pgr=1, and

) —

(il p+qg—1, where p,q e F(P), p+qg =1;
)
)

Theorem 15. For A € A, M([I|A]) is representable
over L P = (Z[F1/I, (F)).
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Universal representation

M = (XUY,B), X basis. Au,x = (aj) X x Y matrix;
a; unknowns. For each B € B an unknown ig. Ring
Z[{aj} u{ig}]. Constructideal I

oIf (X\)UjgBthenajel,
o T spanning forest of G(A). If j € T then a;j—1 €1,
o ZCXUY, |Z|=r.If Z&Bthen det(Ayw x[Z]) €1,

o ZC XUY, |Z|=r.IfZe Bthendet(Am x[Z])iz—1 €
I.

Py := (Z[{a;} U {ig}1/I, Cr(Am,x)).

/ department of mathematics and computer science



Universal representation

Theorem 16./fA is an XxY matrix over field F such

that M = M([I|A]), and A is T-normalized, then there
is @a ring homomorphism ¢ : By — F such that

®(Am,x) =A.

Theorem 17. By does not depend on choice of X or
T (different choices give isomorphic rings).
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Settlement Theorem

Matroid N settles M if Py — Py Is surjective.

Theorem 18 (Pendavingh, Van Zwam 2008). M, N
3-connected matroids, N < M. Exactly one of the
following is true:

(i) N settles M;

/ department of mathematics and computer science



Settlement Theorem

Matroid N settles M if Py — Py Is surjective.

Theorem 18 (Pendavingh, Van Zwam 2008). M, N
3-connected matroids, N < M. Exactly one of the

following is true:

(i) N settles M;
(ii) M has 3-connected minor M’ such that

e N does not settle M’;
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Settlement Theorem

Matroid N settles M if Py — Py Is surjective.

Theorem 18 (Pendavingh, Van Zwam 2008). M, N
3-connected matroids, N < M. Exactly one of the

following is true:

(i) N settles M;
(ii) M has 3-connected minor M’ such that

e N does not settle M’;
o N is isomorphic to M/x, M’\y, or M/x\y;
olf N = MY/x\y then one of M/x,M’\y is 3-
connected.
Very useful: limits number of representations of M.

Py — Py — P.
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Examples

The regular partial field

[UO — (Zr {_11 1})
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Examples

The near-regular partial field

Ui =(@Q(a), (-1, a,1-a))
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Examples

The dyadic partial field
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Examples

GF(q) = (GF(q), GF(q)™)
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Examples

The golden ratio partial field

D = (Q(V5), (-
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The End

e Lifts: arXiv:0804.3263
e Universal partial fields: arXiv:0806.4487
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http://arxiv.org/abs/0804.3263
http://arxiv.org/abs/0806.4487

