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Projective n-space:

• “points” are 1-dimensional subspaces of Fn+1;

• “lines” are 2-dimensional subspaces;

• . . .
Through every 2 points is a unique line; every 2
coplanar lines meet in a unique point.

Projective geometry



6/37

/ department of mathematics and computer science

• Two subspaces are “incident” if one is contained
in the other.

• Projective transformations: preserve incidences.

• Projective transformations are invertible linear
transformations.

• Projective transformations do not preserve an-
gles, distances, “between-ness”.

Projective geometry
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Cross-ratio: quantity that is preserved under linear
transformations.

A B C D

Cr(A,B,C,D) :=
AC ·DB
CB · AD

Scale so that C = A + B; D = αA + B. Then
Cr(A,B,C,D) = α.

Cross-ratio
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Cross-ratio: quantity that is preserved under linear
transformations.

A B C D

Cr(A,B,C,D) :=
AC ·DB
CB · AD

Scale so that C = A + B; D = αA + B. Then
Cr(A,B,C,D) = α.
Changing the order changes the cross ratio.
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Cross-ratio
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What we will look at:

• Finite set E of points in projective n-space over F;

• If B is the collection of minimal spanning subsets
of a configuration E, then we call M = (E,B) a com-
binatorial geometry or matroid.

• If E is represented as the set of columns of a ma-
trix A, then we write M(A) for this matroid.

Finite configurations
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What we will look at:

• Finite set E of points in projective n-space over F;

• If B is the collection of minimal spanning subsets
of a configuration E, then we call M = (E,B) a com-
binatorial geometry or matroid.

• If E is represented as the set of columns of a ma-
trix A, then we write M(A) for this matroid.

What cross-ratios can we find?

• Restriction to subsets of points;

• Projection from  ∈ E onto orthogonal subspace.

Finite configurations
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Let A be an X × Y matrix.







X Y

1 0
... A

0 1






↔







Y

X A







Minors of matrices
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Let A be an X × Y matrix.







X Y

1 0
... A

0 1






↔







Y

X A







A minor of A is a matrix obtained by

• Scaling rows and columns;

• Deleting rows and columns (notation: A− );

• Pivoting on a nonzero entry:

A =
�

y Y′

  b
X′ c D

�

→
�

 Y′

y −1 −1b
X′ −−1c D− −1cb

�

= Ay.

Minors of matrices
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A minor of A is a matrix obtained by

• Scaling rows and columns;

• Deleting rows and columns;

• Pivoting on a nonzero entry:

Notation: B � A.

Cr(A) :=
¦

 |
�

1 
1 1

�

� A
©

Cross-ratios of a matrix
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A minor of A is a matrix obtained by

• Scaling rows and columns;

• Deleting rows and columns;

• Pivoting on a nonzero entry:

Notation: B � A.

Cr(A) :=
¦

 |
�

1 
1 1

�

� A
©

Let G := 〈−1,Cr(A)〉 be the multiplicative subgroup
of F generated by {−1} ∪ Cr(A).
Lemma 1. There exist nonsingular diagonal matri-
ces D1, D2 such that every subdeterminant of D1AD2
is in G.

Cross-ratios of a matrix
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Idea (Semple, Whittle 1996): throw away all unnec-
essary field structure!

Definition 2.
A partial field P is a pair (O,G) of a ring and a group,
such that −1 ∈ G ⊆ O∗.
Elements of P are elements of G ∪ {0}.

Partial fields
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Idea (Semple, Whittle 1996): throw away all unnec-
essary field structure!

Definition 2.
A partial field P is a pair (O,G) of a ring and a group,
such that −1 ∈ G ⊆ O∗.
Elements of P are elements of G ∪ {0}.

Addition is not always defined, but is completely de-
termined by the cross-ratios:

p+ q = p(1− (−
q

p
))

Partial fields
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Idea (Semple, Whittle 1996): throw away all unnec-
essary field structure!

Definition 2.
A partial field P is a pair (O,G) of a ring and a group,
such that −1 ∈ G ⊆ O∗.
Elements of P are elements of G ∪ {0}.

Addition is not always defined, but is completely de-
termined by the cross-ratios:

p+ q = p(1− (−
q

p
))

A matrix A over O is a P-matrix if det(B) ∈ P for all
square submatrices of A.

Partial fields
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Problem 3. Let P = (O,G) be a partial field.

(i) For p ∈ P, decide if 1− p ∈ P;

(ii) Find {p ∈ P | 1− p ∈ P}.

Open problem
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Problem 3. Let P = (O,G) be a partial field.

(i) For p ∈ P, decide if 1− p ∈ P;

(ii) Find {p ∈ P | 1− p ∈ P}.

Special case: O = Z[1, . . . , n]/ ,  finitely gener-
ated, and G = 〈1, . . . , n〉.

Open problem
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Let P1 := (O1,G1) and P2 := (O2,G2).

• φ : P1→ P2 is homomorphism if

– φ(1) = 1
– φ(pq) = φ(p)φ(q)
– If p+ q ∈ P then φ(p) + φ(q) = φ(p+ q)

Example: ring homomorphism with φ(G1) ⊆ G2.

• M([|A]) = M(φ([|A]))

Homomorphisms
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• “Trivial” example: A is R-matrix, Cr(A) = {0,1}.

• Then A is (up to scaling), a U0-matrix, where U0 :=
(Z,{−1,1}).

• Also known as totally unimodular matrix

• Homomorphism to every other field!

Examples
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• “Trivial” example: A is R-matrix, Cr(A) = {0,1}.

• Then A is (up to scaling), a U0-matrix, where U0 :=
(Z,{−1,1}).

• Also known as totally unimodular matrix

• Homomorphism to every other field!

• F = R, Cr(A) = {0,1,−1,2, 12}.

• Then A is (up to scaling), a D-matrix, where D :=
(Z[12], 〈−1,2〉).

• Homomorphism to every field not of characteris-
tic 2.

Examples
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• “Trivial” example: A is R-matrix, Cr(A) = {0,1}.

• Then A is (up to scaling), a U0-matrix, where U0 :=
(Z,{−1,1}).

• Also known as totally unimodular matrix

• Homomorphism to every other field!

• F = R, Cr(A) = {0,1,−1,2, 12}.

• Then A is (up to scaling), a D-matrix, where D :=
(Z[12], 〈−1,2〉).

• Homomorphism to every field not of characteris-
tic 2.

Examples
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Regular: U0 := (Z,{−1,1}).
Theorem 4 (Tutte 1965). Let M be a matroid. The
following are equivalent:

• M is representable over GF(2) and GF(3)

• M is representable over R by a totally unimodular
matrix

• M is representable over every field

The other way round
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• If P1 = (O1,G1) and P2 = (O2,G2) then

P1 ⊗ P2 := (O1 ×O2,G1 ×G2).

addition, multiplication componentwise.

Products of partial fields
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• If P1 = (O1,G1) and P2 = (O2,G2) then

P1 ⊗ P2 := (O1 ×O2,G1 ×G2).

addition, multiplication componentwise.

• If M = M([|A1]) = M([|A2]), then

M = M([|A1 ⊗ A2]).

Products of partial fields
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• If P1 = (O1,G1) and P2 = (O2,G2) then

P1 ⊗ P2 := (O1 ×O2,G1 ×G2).

addition, multiplication componentwise.

• If M = M([|A1]) = M([|A2]), then

M = M([|A1 ⊗ A2]).

�

1 1
1 p1

�

⊗
�

1 1
1 p2

�

=
�

(1,1) (1,1)
(1,1) (p1, p2)

�

Products of partial fields
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Regular: U0 := (Z,{−1,1}).
Theorem 5 (Tutte 1965). Let M be a matroid. The
following are equivalent:

• M is representable over GF(2) and GF(3)

• M is representable over R by a totally unimodular
matrix

• M is representable over every field

The other way round
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Regular: U0 := (Z,{−1,1}).
Theorem 5 (Tutte 1965). Let M be a matroid. The
following are equivalent:

• M is representable over GF(2) and GF(3)

• M is representable over R by a totally unimodular
matrix

• M is representable over every field

Proof. Consider partial field GF(2)⊗GF(3). Elements
are (0,0), (1,1), (1,−1). Find bijective homomor-
phism

φ : GF(2)⊗GF(3)→ (Z,{−1,1}).

The other way round
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Dyadic: D := (Z[12], 〈−1,2〉).
Theorem 6 (Whittle 1997). Let M be a matroid. The
following are equivalent:

• M is representable over GF(3) and GF(5)

• M is D-representable

• M is representable over every field not of charac-
teristic 2

Problem: GF(3) ⊗ GF(5) is finite, but D =
(Z[12], 〈−1,2〉) is infinite!

The other way round
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Dyadic: D := (Z[12], 〈−1,2〉).
Theorem 6 (Whittle 1997). Let M be a matroid. The
following are equivalent:

• M is representable over GF(3) and GF(5)

• M is D-representable

• M is representable over every field not of charac-
teristic 2

Problem: GF(3) ⊗ GF(5) is finite, but D =
(Z[12], 〈−1,2〉) is infinite!

Cr(GF(3)⊗GF(5)) = {
�

0
0

�

,
�

1
1

�

,
�

2
2

�

,
�

2
3

�

,
�

2
4

�

}

Cr(D) = { 0, 1, 2,
1

2
, −1}

The other way round
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Choose basis X. A is an X × Y rep. matrix over F.

• Positions of zeroes are fixed.

• G(A) is bipartite graph with vertex classes X, Y.
y ∈ E(G) if and only if Ay 6= 0.

• Suppose edges 1y1, . . . , kyk form spanning for-
est of G(A). Let θ1, . . . , θk ∈ F∗. Can scale rows
and columns so that Ay = θ for all .

• A is normalized if, for some spanning forest T,
Ay = 1 for all y ∈ T.







4 5 6 7

1 1 0 1 1
2 1 1 0 1
3 0 1 −1 1







Normalization
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A recipe
Input:

• Partial fields P, bP

• Bijection ↑ : Cr(P)→ Cr(bP)

• P-matrix A

Output: matrix A↑ with entries in bP

A =











1 0
�

2
4

�

1
1 1 0 0
0 1 1 1
1 1 0

�

2
2

�











A↑ =





















The Lift Theorem



21/37

/ department of mathematics and computer science

Theorem 7 (vZ, Pendavingh 2008). Let P, bP, ↑ be as
before and let A be a P-matrix. Then either

• A↑ is a bP-matrix and M([|A]) = M([|A↑]), or

• B↑ is not a P-matrix for some

B ∈
¦�

1 1 1
1 p q

�

| p, q ∈ Cr(P)
©

∪
nh 1 1 0 1

1 0 1 1
0 1 1 1

io

.

The Lift Theorem
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Dyadic: D = (Z[12], 〈−1,2〉).
Theorem 8 (Whittle 1997). Let M be a matroid. The
following are equivalent:

(i) M is representable over GF(3)⊗GF(5)
(ii) M is D-representable

(iii) M is representable over every field not of charac-
teristic 2

Applications
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Near-regular: U1 := (Q(α), 〈−1, α,1− α〉).
Theorem 9 (Whittle 1997). Let M be a matroid. The
following are equivalent:

(i) M is representable over GF(3)⊗GF(4)⊗GF(5)
(ii) M is representable over GF(3)⊗GF(8)
(iii) M is U1-representable

(iv) M is representable over every partial field with at
least 3 elements.

Applications
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Golden ratio: G := (Q(
p
5), 〈−1, τ〉) where τ = 1

2(1 +p
5) is the golden ratio, i.e. a root of 2−−1. Then
〈−1, τ〉 are the units of the ring of integers of Q(

p
5).

Theorem 10 (Vertigan). Let M be a matroid. The
following are equivalent:

(i) M is representable over GF(4)⊗GF(5);
(ii) M is G-representable;

(iii) M is representable over GF(5), over GF(p2) for all
primes p, and over GF(p) when p ≡ ±1 mod 5.

Applications
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Gaussian: H2 := (C, 〈,1 − 〉), where  is a root of
2 + 1 = 0.

Theorem 11. Let M be a 3-connected matroid with
a U2,5- or U3,5-minor. The following are equivalent:

(i) M has 2 inequivalent representations over GF(5);

(ii) M is H2-representable;

(iii) M has two inequivalent representations over
GF(5), is representable over GF(p2) for all primes
p ≥ 3, and over GF(p) when p ≡ 1 mod 4.

Applications
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Conjecture 12. A matroid is representable over
GF(2k) for all k > 1 if and only if it is representable
over U(2)1 .

Here U(2)1 = (GF(2)(α), 〈α,1+ α〉).
Question 13. Which partial fields P are such that
whenever the set of P-representable matroids is also
representable over a field F, there exists a homo-
morphism φ : LP→ F?

Question 14. Can more results be derived from the
Lift Theorem?

Open problems
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eF := {ep | p ∈ F(P)} set of symbols,  ideal in Z[eF]
generated by

(i) e0− 0; e1− 1;

(ii)g−1+ 1 if −1 ∈ F(P);
(iii) ep+ eq− 1, where p, q ∈ F(P), p+ q = 1;

(iv) epeq− 1, where p, q ∈ F(P), pq = 1;

(v) epeqer − 1, where p, q, r ∈ Cr(A), pqr = 1, and
�

1 1 1
1 p q−1

�

� A ∈ A.

An algebraic construction
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eF := {ep | p ∈ F(P)} set of symbols,  ideal in Z[eF]
generated by

(i) e0− 0; e1− 1;

(ii)g−1+ 1 if −1 ∈ F(P);
(iii) ep+ eq− 1, where p, q ∈ F(P), p+ q = 1;

(iv) epeq− 1, where p, q ∈ F(P), pq = 1;

(v) epeqer − 1, where p, q, r ∈ Cr(A), pqr = 1, and
�

1 1 1
1 p q−1

�

� A ∈ A.

Theorem 15. For A ∈ A, M([|A]) is representable
over LAP = (Z[eF]/ , 〈eF〉).

An algebraic construction
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





1 2 3 4 5 6 7






Universal partial field
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M = (X ∪ Y,B); X basis. AM,X = (j) X × Y matrix;
j unknowns. For each B ∈ B an unknown B. Ring
Z[{j} ∪ {B}]. Construct ideal :

• If (X \ ) ∪ j 6∈ B then j ∈ ;
• T spanning forest of G(A). If j ∈ T then j − 1 ∈ ;
• Z ⊆ X ∪ Y, |Z| = r. If Z 6∈ B then det(AM,X[Z]) ∈ ;
• Z ⊆ X∪Y, |Z| = r. If Z ∈ B then det(AM,X[Z])Z−1 ∈
.

PM :=
�

Z[{j} ∪ {B}]/ ,Cr(AM,X)
�

.

Universal representation
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Theorem 16. If A is an X×Y matrix over field F such
that M = M([|A]), and A is T-normalized, then there
is a ring homomorphism φ : BM→ F such that

φ(AM,X) = A.

Theorem 17. BM does not depend on choice of X or
T (different choices give isomorphic rings).

Universal representation
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Matroid N settles M if PN→ PM is surjective.

Theorem 18 (Pendavingh, Van Zwam 2008). M,N
3-connected matroids, N � M. Exactly one of the
following is true:

(i) N settles M;

Settlement Theorem
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Matroid N settles M if PN→ PM is surjective.

Theorem 18 (Pendavingh, Van Zwam 2008). M,N
3-connected matroids, N � M. Exactly one of the
following is true:

(i) N settles M;

(ii) M has 3-connected minor M′ such that

• N does not settle M′;

Settlement Theorem
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Matroid N settles M if PN→ PM is surjective.

Theorem 18 (Pendavingh, Van Zwam 2008). M,N
3-connected matroids, N � M. Exactly one of the
following is true:

(i) N settles M;

(ii) M has 3-connected minor M′ such that

• N does not settle M′;
• N is isomorphic to M′/, M′\y, or M′/\y;
• If N ∼= M′/ \ y then one of M′/,M′ \ y is 3-

connected.

Very useful: limits number of representations of M.

PN→ PM→ P.

Settlement Theorem
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The regular partial field

U0 = (Z,{−1,1})

Examples
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The near-regular partial field

U1 = (Q(α), 〈−1, α,1− α〉)

Examples
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The dyadic partial field

D = (Z[
1

2
], 〈−1,2〉)

Examples
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GF(q)

GF(q) = (GF(q),GF(q)∗)

Examples
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The golden ratio partial field

D = (Q(
p

5), 〈−1, τ〉)

Examples
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Thank you for your attention!

• Lifts: arXiv:0804.3263

• Universal partial fields: arXiv:0806.4487

The End

http://arxiv.org/abs/0804.3263
http://arxiv.org/abs/0806.4487

