Cross-ratios in partial fields

Stefan van Zwam Based on joint work with Rudi Pendavingh

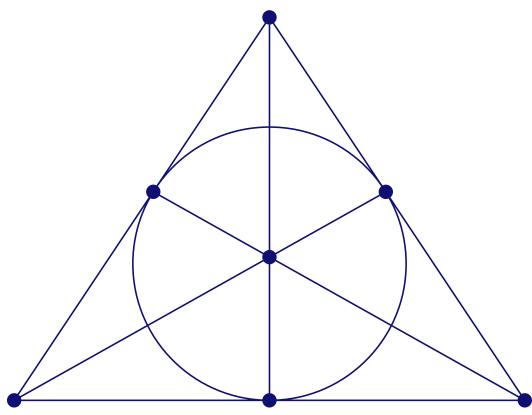
Tue Technische Universiteit
Eindhoven
University of Technology

Today's topic

Partial fields

Today's topic

Matroids



Cross-ratios

3

Projective geometry

Projective *n*-space:

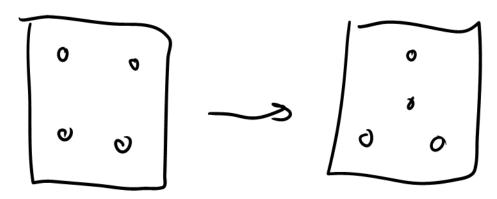
- "points" are 1-dimensional subspaces of \mathbb{F}^{n+1} ;
- "lines" are 2-dimensional subspaces;
- . . .

Through every 2 points is a unique line; every 2 coplanar lines meet in a unique point.

TU/e Technische Universiteit Eindhoven University of Technology

Projective geometry

- Two subspaces are "incident" if one is contained in the other.
- Projective transformations: preserve incidences.
- Projective transformations are *invertible linear* transformations.
- Projective transformations do not preserve angles, distances, "between-ness".



Cross-ratio

Cross-ratio: quantity that *is* preserved under linear transformations.

$$A \quad B \quad C \quad D$$

$$Cr(A, B, C, D) := \frac{AC \cdot DB}{CB \cdot AD}$$

Scale so that C = A + B; $D = \alpha A + B$. Then $Cr(A, B, C, D) = \alpha$.

Cross-ratio

Cross-ratio: quantity that *is* preserved under linear transformations.

$$\stackrel{\bullet}{A}$$
 $\stackrel{\bullet}{B}$ $\stackrel{\bullet}{C}$ $\stackrel{\bullet}{D}$

$$Cr(A, B, C, D) := \frac{AC \cdot DB}{CB \cdot AD}$$

Scale so that C = A + B; $D = \alpha A + B$. Then $Cr(A, B, C, D) = \alpha$.

Changing the order changes the cross ratio.

$$\left\{\alpha, 1-\alpha, \frac{1}{1-\alpha'}, \frac{\alpha}{\alpha-1'}, \frac{\alpha-1}{\alpha'}, \frac{1}{\alpha'}\right\}$$

Finite configurations

What we will look at:

- Finite set E of points in projective n-space over F;
- If \mathcal{B} is the collection of minimal spanning subsets of a configuration E, then we call $M = (E, \mathcal{B})$ a combinatorial geometry or *matroid*.
- If E is represented as the set of columns of a matrix A, then we write M(A) for this matroid.

Finite configurations

What we will look at:

- Finite set E of points in projective n-space over F;
- If \mathcal{B} is the collection of minimal spanning subsets of a configuration E, then we call $M = (E, \mathcal{B})$ a combinatorial geometry or *matroid*.
- If E is represented as the set of columns of a matrix A, then we write M(A) for this matroid.

What cross-ratios can we find?

- Restriction to subsets of points;
- Projection from $v \in E$ onto orthogonal subspace.

Minors of matrices

Let A be an $X \times Y$ matrix.

Minors of matrices

Let A be an $X \times Y$ matrix.

A minor of A is a matrix obtained by

- Scaling rows and columns;
- Deleting rows and columns (notation: A x);
- Pivoting on a nonzero entry:

$$A = \frac{x}{x'} \left[\begin{array}{c|c} y & y' \\ \hline a & b \\ \hline c & D \end{array} \right] \rightarrow \frac{y}{x'} \left[\begin{array}{c|c} x & y' \\ \hline a^{-1} & a^{-1}b \\ \hline -a^{-1}c & D - a^{-1}cb \end{array} \right] = A^{xy}.$$

A *minor* of A is a matrix obtained by

- Scaling rows and columns;
- Deleting rows and columns;
- Pivoting on a nonzero entry:

Notation: $B \leq A$.

$$Cr(A) := \{x \mid \begin{bmatrix} 1 & x \\ 1 & 1 \end{bmatrix} \preceq A\}$$

A *minor* of A is a matrix obtained by

- Scaling rows and columns;
- Deleting rows and columns;
- Pivoting on a nonzero entry:

Notation: $B \leq A$.

$$Cr(A) := \{x \mid \begin{bmatrix} 1 & x \\ 1 & 1 \end{bmatrix} \preceq A\}$$

Let $G := \langle -1, Cr(A) \rangle$ be the multiplicative subgroup of \mathbb{F} generated by $\{-1\} \cup Cr(A)$.

Lemma 1. There exist nonsingular diagonal matrices D_1 , D_2 such that every subdeterminant of D_1AD_2 is in G.

Idea (Semple, Whittle 1996): throw away all unnecessary field structure!

Definition 2.

A partial field \mathbb{P} is a pair (\mathbb{O}, \mathbf{G}) of a ring and a group, such that $-1 \in \mathbf{G} \subseteq \mathbb{O}^*$.

Elements of \mathbb{P} are elements of $\mathbf{G} \cup \{0\}$.

Idea (Semple, Whittle 1996): throw away all unnecessary field structure!

Definition 2.

A partial field \mathbb{P} is a pair (\mathbb{O}, \mathbf{G}) of a ring and a group, such that $-1 \in \mathbf{G} \subseteq \mathbb{O}^*$. Elements of \mathbb{P} are elements of $\mathbf{G} \cup \{0\}$.

Addition is not always defined, but is completely determined by the cross-ratios:

$$p + q = p(1 - (-\frac{q}{p}))$$

Idea (Semple, Whittle 1996): throw away all unnecessary field structure!

Definition 2.

A partial field \mathbb{P} is a pair (\mathbb{O}, \mathbf{G}) of a ring and a group, such that $-1 \in \mathbf{G} \subseteq \mathbb{O}^*$. Elements of \mathbb{P} are elements of $\mathbf{G} \cup \{0\}$.

Addition is not always defined, but is completely determined by the cross-ratios:

$$p+q=p(1-(-\frac{q}{p}))$$

A matrix A over $\mathbb O$ is a $\mathbb P$ -matrix if $\det(B) \in \mathbb P$ for all square submatrices of A.

Problem 3. Let $\mathbb{P} = (\mathbb{O}, \mathbf{G})$ be a partial field.

(i) For
$$p \in \mathbb{P}$$
, decide if $1 - p \in \mathbb{P}$;

(iii) Find
$$\{p \in \mathbb{P} \mid 1-p \in \mathbb{P}\}.$$

$$\left(\widehat{\mathbb{Q}}, \left(-1, 2, 3\right)\right) \qquad \stackrel{!}{\downarrow} 2$$

$$Sol^{S} \quad \text{to } \pm 2^{\infty} \pm 3^{\delta} = 1$$
Thm: only one nontriv. Sol:
$$3^{2} - 2^{3} = 1$$

Problem 3. Let $\mathbb{P} = (\mathbb{O}, \mathbf{G})$ be a partial field.

- (i) For $p \in \mathbb{P}$, decide if $1 p \in \mathbb{P}$;
- (ii) Find $\{p \in \mathbb{P} \mid 1 p \in \mathbb{P}\}$.

Special case: $\mathbb{O} = \mathbb{Z}[x_1, \dots, x_n]/I$, I finitely generated, and $\mathbf{G} = \langle x_1, \dots, x_n \rangle$.

Homomorphisms

Let
$$\mathbb{P}_1 := (\mathbb{O}_1, \mathbf{G}_1)$$
 and $\mathbb{P}_2 := (\mathbb{O}_2, \mathbf{G}_2)$.

- $\varphi : \mathbb{P}_1 \to \mathbb{P}_2$ is homomorphism if
 - $-\varphi(1)=1$
 - $-\varphi(pq) = \varphi(p)\varphi(q)$
 - If $p + q \in \mathbb{P}$ then $\varphi(p) + \varphi(q) = \varphi(p + q)$

Example: ring homomorphism with $\varphi(\mathbf{G}_1) \subseteq \mathbf{G}_2$.

 $\bullet M([I|A]) = M(\varphi([I|A]))$

Examples

- "Trivial" example: A is \mathbb{R} -matrix, $Cr(A) = \{0, 1\}$.
- Then A is (up to scaling), a \mathbb{U}_0 -matrix, where $\mathbb{U}_0 := (\mathbb{Z}, \{-1, 1\})$.
- Also known as totally unimodular matrix
- Homomorphism to every other field!

Examples

- "Trivial" example: A is \mathbb{R} -matrix, $Cr(A) = \{0, 1\}$.
- Then A is (up to scaling), a \mathbb{U}_0 -matrix, where $\mathbb{U}_0 := (\mathbb{Z}, \{-1, 1\})$.
- Also known as totally unimodular matrix
- Homomorphism to every other field!

- $\mathbb{F} = \mathbb{R}$, $Cr(A) = \{0, 1, -1, 2, \frac{1}{2}\}$.
- Then A is (up to scaling), a \mathbb{D} -matrix, where $\mathbb{D}:=(\mathbb{Z}[\frac{1}{2}],\langle -1,2\rangle).$
- Homomorphism to every field not of characteristic 2.

Examples

- "Trivial" example: A is \mathbb{R} -matrix, $Cr(A) = \{0, 1\}$.
- Then A is (up to scaling), a \mathbb{U}_0 -matrix, where $\mathbb{U}_0 := (\mathbb{Z}, \{-1, 1\})$.
- Also known as totally unimodular matrix
- Homomorphism to every other field!

- $\mathbb{F} = \mathbb{R}$, $Cr(A) = \{0, 1, -1, 2, \frac{1}{2}\}$.
- Then A is (up to scaling), a \mathbb{D} -matrix, where $\mathbb{D}:=(\mathbb{Z}[\frac{1}{2}],\langle -1,2\rangle).$
- Homomorphism to every field not of characteristic 2.

The other way round

Regular: $U_0 := (\mathbb{Z}, \{-1, 1\}).$

Theorem 4 (Tutte 1965). Let M be a matroid. The following are equivalent:

- M is representable over GF(2) and GF(3)
 - M is representable over \mathbb{R} by a totally unimodular M matrix
 - M is representable over every field

• If $\mathbb{P}_1 = (\mathbb{O}_1, \mathbf{G}_1)$ and $\mathbb{P}_2 = (\mathbb{O}_2, \mathbf{G}_2)$ then

$$\mathbb{P}_1 \otimes \mathbb{P}_2 := (\mathbb{O}_1 \times \mathbb{O}_2, \mathbf{G}_1 \times \mathbf{G}_2).$$

addition, multiplication componentwise.

$$(0,0)$$
, (x,y) $x,y \neq 0.1$
 $(0,0)$, $(1,1)$, (x,y) $x,y \neq 0.1$
 (x,y)

• If $\mathbb{P}_1 = (\mathbb{O}_1, \mathbf{G}_1)$ and $\mathbb{P}_2 = (\mathbb{O}_2, \mathbf{G}_2)$ then

$$\mathbb{P}_1 \otimes \mathbb{P}_2 := (\mathbb{O}_1 \times \mathbb{O}_2, \mathbf{G}_1 \times \mathbf{G}_2).$$

addition, multiplication componentwise.

• If $M = M([I|A_1]) = M([I|A_2])$, then

$$M = M([I|A_1 \otimes A_2]).$$

• If $\mathbb{P}_1 = (\mathbb{O}_1, \mathbf{G}_1)$ and $\mathbb{P}_2 = (\mathbb{O}_2, \mathbf{G}_2)$ then

$$\mathbb{P}_1 \otimes \mathbb{P}_2 := (\mathbb{O}_1 \times \mathbb{O}_2, \mathbf{G}_1 \times \mathbf{G}_2).$$

addition, multiplication componentwise.

• If $M = M([I|A_1]) = M([I|A_2])$, then

$$M = M([I|A_1 \otimes A_2]).$$

$$\begin{pmatrix} 1 & 1 \\ 1 & p_1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 1 \\ 1 & p_2 \end{pmatrix} = \begin{pmatrix} (1,1) & (1,1) \\ (1,1) & (p_1,p_2) \end{pmatrix}$$

The other way round

Regular: $U_0 := (\mathbb{Z}, \{-1, 1\}).$

Theorem 5 (Tutte 1965). Let M be a matroid. The following are equivalent:

- M is representable over GF(2) and GF(3)
- M is representable over \mathbb{R} by a totally unimodular matrix
- M is representable over every field

Regular: $U_0 := (\mathbb{Z}, \{-1, 1\}).$

Theorem 5 (Tutte 1965). Let M be a matroid. The following are equivalent:

- M is representable over GF(2) and GF(3)
 - M is representable over R by a totally unimodular matrix
- M is representable over every field

Proof. Consider partial field $GF(2) \otimes GF(3)$. Elements are (0,0), (1,1), (1,-1). Find bijective homomorphism

 $\varphi : \mathsf{GF}(2) \otimes \mathsf{GF}(3) \to (\mathbb{Z}, \{-1, 1\}).$

Dyadic: $\mathbb{D} := (\mathbb{Z}[\frac{1}{2}], \langle -1, 2 \rangle).$

Theorem 6 (Whittle 1997). Let M be a matroid. The following are equivalent:

- M is representable over GF(3) and GF(5)
- M is D-representable

 M is representable over every field not of characteristic 2

Problem: GF(3) \otimes GF(5) is finite, but $\mathbb{D} = (\mathbb{Z}[\frac{1}{2}], \langle -1, 2 \rangle)$ is infinite!

Dyadic: $\mathbb{D} := (\mathbb{Z}[\frac{1}{2}], \langle -1, 2 \rangle).$

Theorem 6 (Whittle 1997). Let M be a matroid. The following are equivalent:

- M is representable over GF(3) and GF(5)
- M is D-representable
 - M is representable over every field not of characteristic 2

Problem: $GF(3) \otimes GF(5)$ is finite, but $(\mathbb{Z}[\frac{1}{2}], \langle -1, 2 \rangle)$ is infinite!

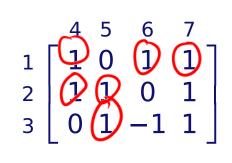
 $Cr(GF(3) \otimes GF(5)) = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\}$ $Cr(\mathbb{D}) = \{ 0, 1, 2, \}$

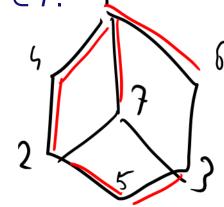
Normalization

Choose basis X. A is an $X \times Y$ rep. matrix over \mathbb{F} .

- Positions of zeroes are fixed.
- G(A) is bipartite graph with vertex classes X, Y. $xy \in E(G)$ if and only if $A_{xy} \neq 0$.
- Suppose edges x_1y_1, \ldots, x_ky_k form spanning forest of G(A). Let $\theta_1, \ldots, \theta_k \in \mathbb{F}^*$. Can scale rows and columns so that $A_{x_iy_i} = \theta_i$ for all i.

• A is normalized if, for some spanning forest T, $A_{xy} = 1$ for all $xy \in T$.





A recipe

Input:

- Partial fields ℙ, ℙ
- Bijection \uparrow : $Cr(\mathbb{P}) \to Cr(\widehat{\mathbb{P}})$
- ℙ-matrix A

Output: matrix A^{\uparrow} with entries in $\widehat{\mathbb{P}}$

$$A = \begin{bmatrix} 1 & 0 & (\frac{2}{4}) & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & (\frac{2}{2}) \end{bmatrix} \qquad A^{\uparrow} = \begin{bmatrix} 1 & 0 & -1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

Theorem 7 (vZ, Pendavingh 2008). Let \mathbb{P} , $\widehat{\mathbb{P}}$, \uparrow be as before and let A be a \mathbb{P} -matrix. Then either

- A^{\uparrow} is a $\widehat{\mathbb{P}}$ -matrix and $M([I|A]) = M([I|A^{\uparrow}])$, or
- B^{\uparrow} is not a \mathbb{P} -matrix for some

$$B \in \left\{ \begin{bmatrix} 1 & 1 & 1 \\ 1 & p & q \end{bmatrix} \mid p, q \in \operatorname{Cr}(\mathbb{P}) \right\} \cup \left\{ \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \right\}.$$

Applications

Dyadic: $\mathbb{D} = (\mathbb{Z}[\frac{1}{2}], \langle -1, 2 \rangle).$

Theorem 8 (Whittle 1997). Let M be a matroid. The following are equivalent:

- (i) M is representable over GF(3) ⊗ GF(5)
- (ii) M is □-representable
- (iii) M is representable over every field not of characteristic 2

Applications

- Near-regular: $\mathbb{U}_1 := (\mathbb{Q}(\alpha), \langle -1, \alpha, 1 \alpha \rangle).$
- **Theorem 9** (Whittle 1997). Let M be a matroid. The following are equivalent:
- (i) M is representable over $GF(3) \otimes GF(4) \otimes GF(5)$
- (ii) M is representable over GF(3) ⊗ GF(8)
- (iii) M is \mathbb{U}_1 -representable
- (iv) M is representable over every partial field with at least 3 elements.

Applications

Golden ratio: $\mathbb{G} := (\mathbb{Q}(\sqrt{5}), \langle -1, \tau \rangle)$ where $\tau = \frac{1}{2}(1 + \sqrt{5})$ is the *golden ratio*, i.e. a root of $x^2 - x - 1$. Then $\langle -1, \tau \rangle$ are the units of the *ring of integers* of $\mathbb{Q}(\sqrt{5})$.

Theorem 10 (Vertigan). Let M be a matroid. The following are equivalent:

- (i) M is representable over GF(4) ⊗ GF(5);
- (ii) M is G-representable;
- (iii) M is representable over GF(5), over $GF(p^2)$ for all primes p, and over GF(p) when $p \equiv \pm 1 \mod 5$.

Applications

Gaussian: $\mathbb{H}_2 := (\mathbb{C}, \langle i, 1 - i \rangle)$, where i is a root of $x^2 + 1 = 0$.

Theorem 11. Let M be a 3-connected matroid with a $U_{2,5}$ - or $U_{3,5}$ -minor. The following are equivalent:

- (i) M has 2 inequivalent representations over GF(5);
- (ii) M is \mathbb{H}_2 -representable;
- (iii) M has two inequivalent representations over GF(5), is representable over $GF(p^2)$ for all primes $p \ge 3$, and over GF(p) when $p \equiv 1 \mod 4$.

Open problems

Conjecture 12. A matroid is representable over $GF(2^k)$ for all k > 1 if and only if it is representable over $\mathbb{U}_1^{(2)}$.

Here $\mathbb{U}_1^{(2)} = (GF(2)(\alpha), \langle \alpha, 1 + \alpha \rangle).$

Question 13. Which partial fields \mathbb{P} are such that whenever the set of \mathbb{P} -representable matroids is also representable over a field \mathbb{F} , there exists a homomorphism $\varphi : \mathbb{LP} \to \mathbb{F}$?

Question 14. Can more results be derived from the Lift Theorem?

An algebraic construction

27/37

 $\widetilde{F} := \{\widetilde{p} \mid p \in \mathcal{F}(\mathbb{P})\}\$ set of symbols, I ideal in $\mathbb{Z}[\widetilde{F}]$ generated by (i) $\widetilde{0} - 0$; $\widetilde{1} - 1$;

(ii)
$$\widetilde{-1} + 1$$
 if $-1 \in \mathcal{F}(\mathbb{P})$;

(iii)
$$\widetilde{p} + \widetilde{q} - 1$$
, where $p, q \in \mathcal{F}(\mathbb{P}), p + q = 1$;

(iv)
$$\widetilde{p}\widetilde{q} - 1$$
, where $p, q \in \mathcal{F}(\mathbb{P})$, $pq = 1$;

(v)
$$\widetilde{p}\widetilde{q}\widetilde{r} - 1$$
, where $p, q, r \in Cr(A)$, $pqr = 1$, and

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & p & q^{-1} \end{bmatrix} \preceq A \in \mathcal{A}.$$

$$\widetilde{F} := \{\widetilde{p} \mid p \in \mathcal{F}(\mathbb{P})\}$$
 set of symbols, I ideal in $\mathbb{Z}[\widetilde{F}]$ generated by

(i)
$$\widetilde{0} - 0$$
; $\widetilde{1} - 1$;

$$(ii)$$
 $\widetilde{-1} + 1$ if $-1 \in \mathcal{F}(\mathbb{P})$;

(iii)
$$\tilde{n} \perp \tilde{\alpha} = 1$$
 where n

(iii)
$$\widetilde{p} + \widetilde{q} - 1$$
, where $p, q \in \mathcal{F}(\mathbb{P})$, $p + q = 1$;
(iv) $\widetilde{p}\widetilde{q} - 1$, where $p, q \in \mathcal{F}(\mathbb{P})$, $pq = 1$;

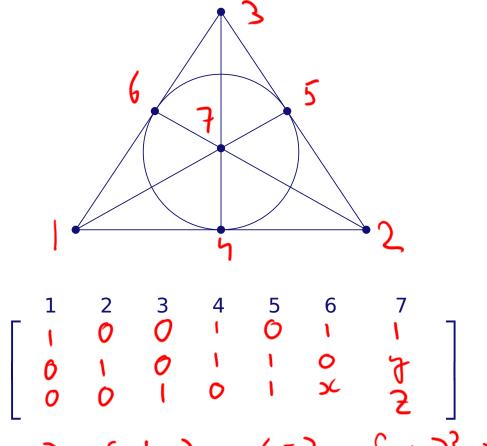
(v)
$$\widetilde{p}\widetilde{q}\widetilde{r} - 1$$
, where $p, q, r \in Cr(A)$, $pqr = 1$, and

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & p & q^{-1} \end{bmatrix} \preceq A \in \mathcal{A}.$$

Theorem 15. For $A \in \mathcal{A}$, M([I|A]) is representable over $\mathbb{L}_A \mathbb{P} = (\mathbb{Z}\lceil \widetilde{F} \rceil / I, \langle \widetilde{F} \rangle).$

Universal partial field

28/37



 $(1,5,7) \longrightarrow y=2$ $(26,7) \longrightarrow x=2$ $(3,4,7) \longrightarrow y=1$ /department of mathematics and computer science $(4,5,6) \longrightarrow 2 \equiv 0$ TU/e Technische University of Technic $M = (X \cup Y, \mathcal{B}); X$ basis. $A_{M,X} = (a_{ij}) X \times Y$ matrix; a_{ij} unknowns. For each $B \in \mathcal{B}$ an unknown i_B . Ring $\mathbb{Z}[\{a_{ij}\} \cup \{i_B\}]$. Construct ideal I:

- If $(X \setminus i) \cup j \notin \mathcal{B}$ then $a_{ij} \in I$;
- T spanning forest of G(A). If $ij \in T$ then $a_{ij} 1 \in I$;
- $Z \subseteq X \cup Y$, |Z| = r. If $Z \notin \mathcal{B}$ then $\det(A_{M,X}[Z]) \in I$;
- $Z \subseteq X \cup Y$, |Z| = r. If $Z \in \mathcal{B}$ then $\det(A_{M,X}[Z])i_Z 1 \in I$.

$$\mathbb{P}_M := (\mathbb{Z}[\{\alpha_{ij}\} \cup \{i_B\}]/I, \operatorname{Cr}(A_{M,X})).$$

Theorem 16. If A is an $X \times Y$ matrix over field \mathbb{F} such that M = M([I|A]), and A is T-normalized, then there is a ring homomorphism $\varphi : \overline{\mathbb{B}}_M \to \mathbb{F}$ such that

$$\varphi(A_{M,X}) = A.$$

Theorem 17. \mathbb{B}_M does not depend on choice of X or T (different choices give isomorphic rings).

Matroid N settles M if $\mathbb{P}_N \to \mathbb{P}_M$ is surjective.

Theorem 18 (Pendavingh, Van Zwam 2008). M, N 3-connected matroids, $N \leq M$. Exactly one of the following is true:

(i) N settles M;

Matroid N settles M if $\mathbb{P}_N \to \mathbb{P}_M$ is surjective.

Theorem 18 (Pendavingh, Van Zwam 2008). M, N 3-connected matroids, $N \leq M$. Exactly one of the following is true:

- (i) N settles M;
- (ii) M has 3-connected minor M' such that
 - N does not settle M';

Matroid *N* settles *M* if $\mathbb{P}_N \to \mathbb{P}_M$ is surjective.

Theorem 18 (Pendavingh, Van Zwam 2008). M, N 3-connected matroids, $N \leq M$. Exactly one of the following is true:

- (i) N settles M;
- (ii) M has 3-connected minor M' such that
 - N does not settle M';
 - N is isomorphic to M'/x, $M' \setminus y$, or $M'/x \setminus y$;
 - If $N \cong M'/x \setminus y$ then one of $M'/x, M' \setminus y$ is 3-connected.

Very useful: limits number of representations of *M*.

 $\mathbb{P}_N \to \mathbb{P}_M \to \mathbb{P}$.

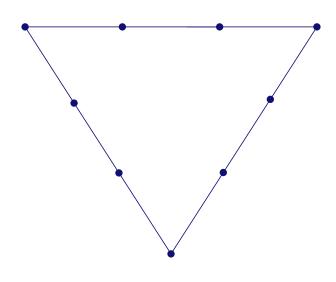
The regular partial field

$$\mathbb{U}_0 = (\mathbb{Z}, \{-1, 1\})$$

The near-regular partial field

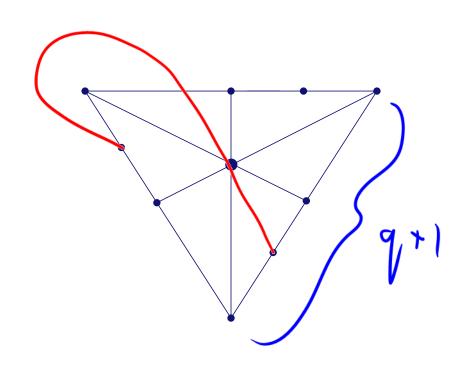
$$\mathbb{U}_1 = (\mathbb{Q}(\alpha), \langle -1, \alpha, 1 - \alpha \rangle)$$

The dyadic partial field



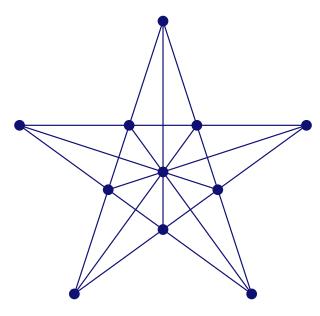
$$\mathbb{D} = (\mathbb{Z}[\frac{1}{2}], \langle -1, 2 \rangle)$$

GF(q)



 $GF(q) = (GF(q), GF(q)^*)$

The golden ratio partial field



$$\mathbb{D} = (\mathbb{Q}(\sqrt{5}), \langle -1, \tau \rangle)$$

Thank you for your attention!

- Lifts: arXiv:0804.3263
- Universal partial fields: arXiv:0806.4487