Laten zien dat het niet past/ How to show it doesn't fit

Stefan van Zwam

Based on joint work with Rhiannon Hall and Dillon Mayhew

Nederlands Mathematisch Congres, April 15, 2009

Where innovation starts

Matroid theory

ON THE ABSTRACT PROPERTIES OF LINEAR DEPENDENCE.1

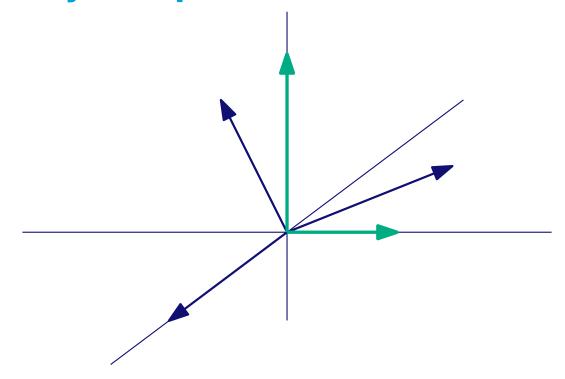
By Hassler Whitney.

- 1. Introduction. Let C_1, C_2, \dots, C_n be the columns of a matrix M. Any subset of these columns is either linearly independent or linearly dependent; the subsets thus fall into two classes. These classes are not arbitrary; for instance, the two following theorems must hold:
 - (a) Any subset of an independent set is independent.
- (b) If N_p and N_{p+1} are independent sets of p and p+1 columns respectively, then N_p together with some column of N_{p+1} forms an independent set of p+1 columns.

There are other theorems not deducible from these; for in § 16 we give an example of a system satisfying these two theorems but not representing any matrix. Further theorems seem, however, to be quite difficult to find. Let us call a system obeying (a) and (b) a "matroid." The present paper is devoted to a study of the elementary properties of matroids. The fundamental question of completely characterizing systems which represent matrices is left unsolved. In place of the columns of a matrix we may equally well consider points or vectors in a Euclidean space, or polynomials, etc.

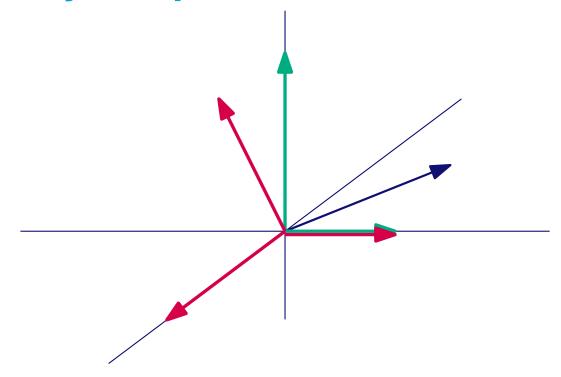
Example

Linearly independent vectors in \mathbb{R}^n



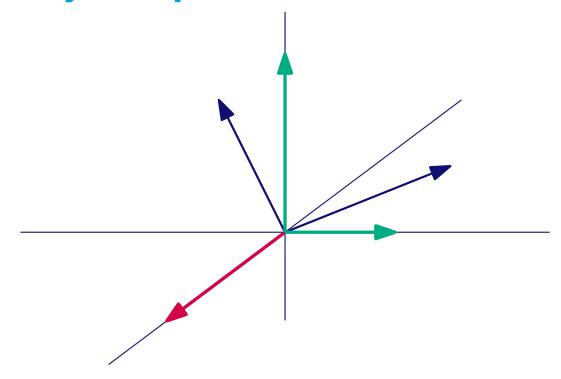
Example

Linearly independent vectors in \mathbb{R}^n



Example

Linearly independent vectors in \mathbb{R}^n



Matroid axioms

Lemma. Given

- E: finite set of vectors
- \mathcal{I} : collection of linearly independent subsets

then

- $\emptyset \in \mathcal{I}$
- $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$
- $I, J \in \mathcal{I}$ and |I| < |J|, then

 $\exists e \in J \setminus I \text{ such that } I \cup \{e\} \in \mathcal{I}$

Definition. Given

- E: finite set
- \mathcal{I} : collection of subsets
- such that
 - $\emptyset \in \mathcal{I}$
 - $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$
 - $I, J \in \mathcal{I}$ and |I| < |J|, then

 $\exists e \in I \setminus I \text{ such that } I \cup \{e\} \in \mathcal{I}$

Then $M = (E, \mathcal{I})$ is a **matroid**.

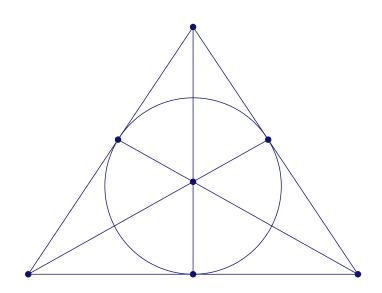
- 1899: Hilbert, Bernays: Plane geometry
- 1900–1936: Dedekind, Birkhoff, MacLane: Semimodular lattices
- 1910–1937: Steinitz, Van der Waerden: Algebraic dependence
- 1936: Nakasawa: Projective geometry
- 1935: Whitney: Lin. dependence, duality, graphs
- **1942: Rado:** Transversals (matching theory)
- 1958: Tutte: Connectivity, minors, ...
- 1971: Edmonds: Greedy algorithm
- Rota, Brylawski, Seymour, ...

The representation problem

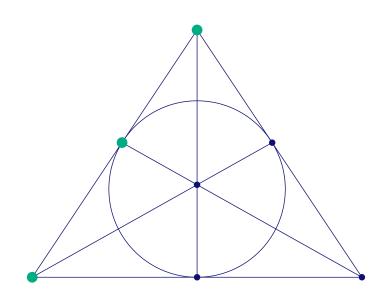
Problem. Is there a map

$$E \to \mathbb{F}^n$$

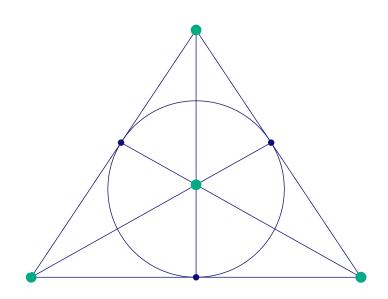
preserving the dependencies of $M = (E, \mathcal{I})$?



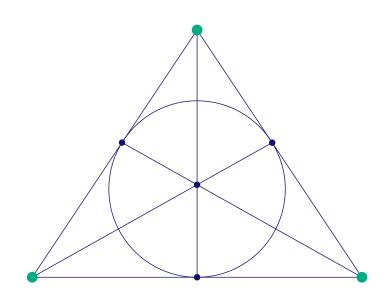
- *E* = { points }
- $\mathcal{I} = \{ X \subseteq E \text{ in general position } \}$



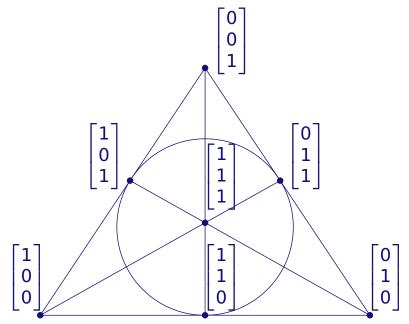
- *E* = { points }
- $\mathcal{I} = \{ X \subseteq E \text{ in general position } \}$



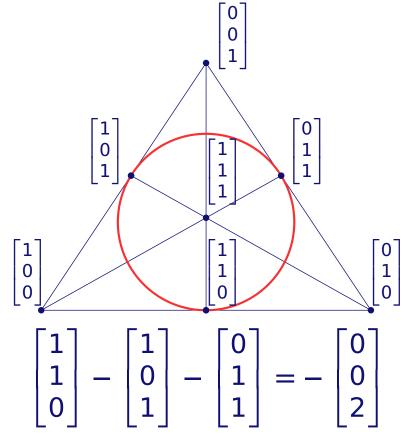
- *E* = { points }
- $\mathcal{I} = \{ X \subseteq E \text{ in general position } \}$



- *E* = { points }
- $\mathcal{I} = \{ X \subseteq E \text{ in general position } \}$



- *E* = { points }
- $\mathcal{I} = \{ X \subseteq E \text{ in general position } \}$



How to show it doesn't fit?

Problem. Is there a dependency-preserving map

$$E(M) \rightarrow \mathbb{F}$$
 ?

How to show it doesn't fit?

Problem. Is there a dependency-preserving map

$$E(M) \rightarrow \mathbb{F}$$
?

• "Yes" certified by vectors $\{v_1, \ldots, v_n\}$

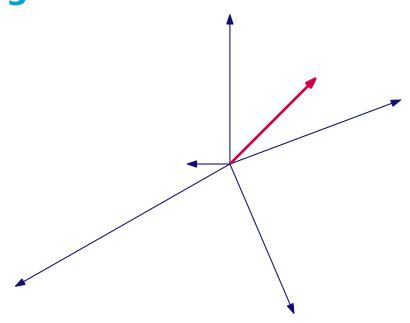
How to show it doesn't fit?

Problem. Is there a dependency-preserving map

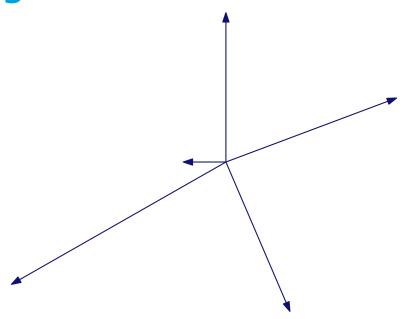
$$E(M) \rightarrow \mathbb{F}$$
?

- "Yes" certified by vectors $\{v_1, \ldots, v_n\}$
- How to certify "no"?

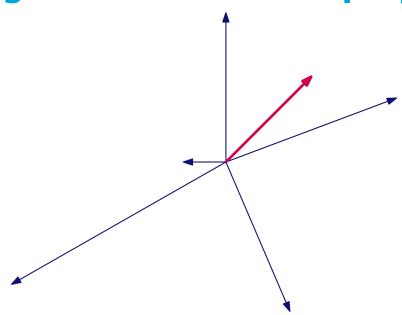
Reducing a set of vectors: deletion



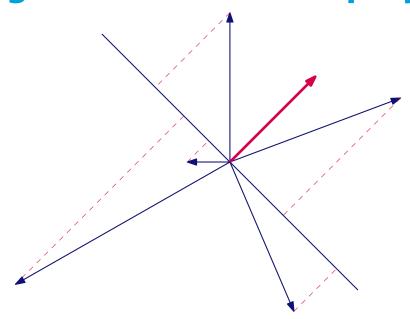
Reducing a set of vectors: deletion



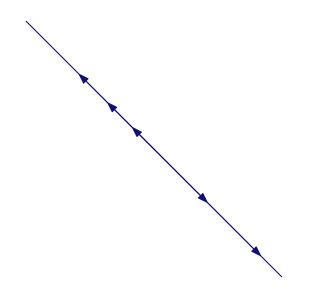
Reducing a set of vectors: projection



Reducing a set of vectors: projection



Reducing a set of vectors: projection



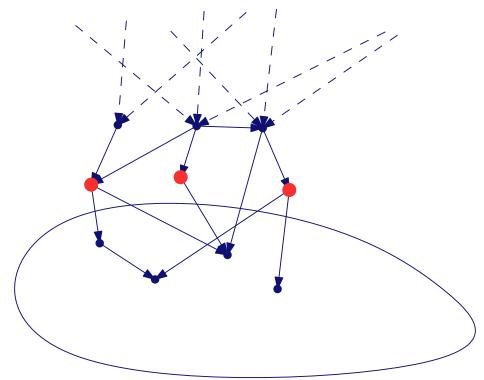
Abstract definition

- Deletion: $M \setminus e := (E \setminus \{e\}, \{I \in \mathcal{I} : e \notin I\})$
- Contraction: $M/e := (E \setminus \{e\}, \{I : I \cup \{e\} \in \mathcal{I}\})$
- Minors: Obtained from sequence of such steps

Abstract definition

- Deletion: $M \setminus e := (E \setminus \{e\}, \{I \in \mathcal{I} : e \notin I\})$
- Contraction: $M/e := (E \setminus \{e\}, \{I : I \cup \{e\} \in \mathcal{I}\})$
- Minors: Obtained from sequence of such steps
 - Generate partial order
 - Preserve representability

Excluded minors



That's how!

Problem:

Is there a dependency-preserving map

$$E(M) \rightarrow \mathbb{F}$$

- How to certify the answer is "no"?
- By reducing to an excluded minor!

That's how!

Problem:

Is there a dependency-preserving map

$$E(M) \rightarrow \mathbb{F}$$

- How to certify the answer is "no"?
- By reducing to an excluded minor!
- Rota's Conjecture: finitely many

Rota's Conjecture

Conjecture (Rota 1971): \mathbb{F} finite, then $\exists k = k(\mathbb{F})$: exactly k excluded minors for

$$\left\{M:E(M)\to\right\}$$

Rota's Conjecture

Conjecture (Rota 1971): \mathbb{F} finite, then $\exists k = k(\mathbb{F})$: exactly k excluded minors for

$$\left\{M:E(M)\to\right\}$$

• Proven for $\mathbb{F} \in \{GF(2), GF(3), GF(4)\}$

Regular matroids

Theorem (Tutte 1958):

Exactly 3 excluded minors for

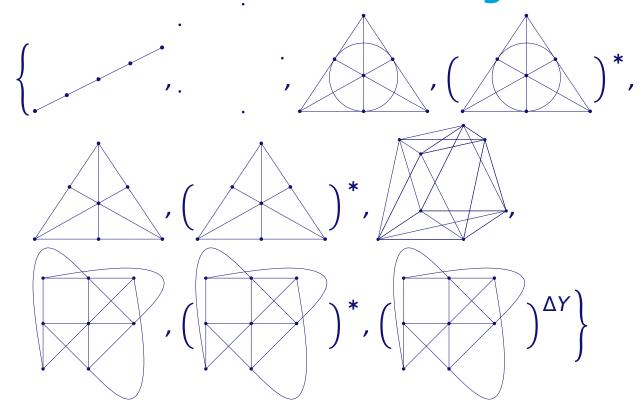
$$\left\{M : E(M) \rightarrow \begin{array}{c} GF(2) \\ GF(3) \\ GF(4) \\ GF(5) \\ GF(7) \\ \vdots \end{array}\right\}$$

Theorem (Hall, Mayhew, vZ 2009):

Exactly 10 excluded minors for

$$\left\{ M : E(M) \to \begin{array}{c} GF(3) \\ GF(4) \\ GF(5) \\ GF(7) \\ \vdots \end{array} \right\}$$

Excluded minors for near-regular



Theorem (Hall, Mayhew, vZ 2009):

Exactly 10 excluded minors for

$$\left\{M : E(M) \to \begin{array}{c} GF(3) \\ GF(4) \\ GF(5) \\ GF(7) \\ \vdots \end{array}\right\}$$

Theorem (Hall, Mayhew, vZ 2009):

Exactly 10 excluded minors for

$$\left\{M:E(M)\to\mathbb{P}\right\}$$

Theorem (Hall, Mayhew, vZ 2009):

Exactly 10 excluded minors for

$$\left\{M:E(M)\to\mathbb{P}\right\}$$

Why care?

- Complexity of algorithms
- Structure of ternary matroids
- Sharpening the knives for Rota's Conjecture

Summary

- Matroid axioms abstract linear dependence
- Matroids occur everywhere
- Representation problem
- Excluded minors
- Near-regular matroids

Thank you for listening

Preprint at http://www.win.tue.nl/~svzwam/

