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Matroid theory
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Lemma. Given

E: finite set of vectors

I: collection of linearly independent subsets

then

•∅ ∈ I
• J ∈ I and  ⊆ J, then  ∈ I
• , J ∈ I and || < |J|, then

∃e ∈ J \  such that  ∪ {e} ∈ I

Matroid axioms
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Definition. Given

E: finite set

I: collection of subsets

such that

•∅ ∈ I
• J ∈ I and  ⊆ J, then  ∈ I
• , J ∈ I and || < |J|, then

∃e ∈ J \  such that  ∪ {e} ∈ I

Then M = (E,I) is a matroid.

Matroid axioms
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1899: Hilbert, Bernays: Plane geometry

1900–1936: Dedekind, Birkhoff, MacLane:
Semimodular lattices

1910–1937: Steinitz, Van der Waerden:
Algebraic dependence

1936: Nakasawa: Projective geometry

1935: Whitney: Lin. dependence, duality, graphs

1942: Rado: Transversals (matching theory)

1958: Tutte: Connectivity, minors, . . .

1971: Edmonds: Greedy algorithm

Rota, Brylawski, Seymour, . . .

Matroids everywhere!
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The representation problem

Problem. Is there a map

E→ Fn

preserving the dependencies of M = (E,I)?

Matroid representation
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Example: the Fano matroid

10
0



00
1



01
0


• E = { points }

• I = {X ⊆ E in general position }

Matroid representation
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How to show it doesn’t fit?

Problem. Is there a dependency-preserving map

E(M)→
GF(2)

F

...

?

Matroid representation
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• “Yes” certified by vectors {1, . . . , n}
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How to show it doesn’t fit?

Problem. Is there a dependency-preserving map

E(M)→
GF(2)

F

...

?

• “Yes” certified by vectors {1, . . . , n}

• How to certify “no”?

Matroid representation
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Reducing a set of vectors: deletion

Matroid minors
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Reducing a set of vectors: projection

Matroid minors



20/31

/ department of mathematics and computer science

Reducing a set of vectors: projection

Matroid minors



21/31

/ department of mathematics and computer science

Reducing a set of vectors: projection

Matroid minors



22/31

/ department of mathematics and computer science

Abstract definition
• Deletion: M\e := (E \ {e},{ ∈ I : e 6∈ })
• Contraction: M/e := (E \ {e},{ :  ∪ {e} ∈ I})
• Minors: Obtained from sequence of such steps

Matroid minors
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Abstract definition
• Deletion: M\e := (E \ {e},{ ∈ I : e 6∈ })
• Contraction: M/e := (E \ {e},{ :  ∪ {e} ∈ I})
• Minors: Obtained from sequence of such steps

– Generate partial order
– Preserve representability

Matroid minors
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Excluded minors

Matroid minors
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That’s how!

Problem:
Is there a dependency-preserving map

¨
M : E(M)→

GF(2)

F

...

«

• How to certify the answer is “no”?

• By reducing to an excluded minor!

Matroid representation
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That’s how!

Problem:
Is there a dependency-preserving map

¨
M : E(M)→

GF(2)

F

...

«

• How to certify the answer is “no”?

• By reducing to an excluded minor!

• Rota’s Conjecture: finitely many

Matroid representation
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Rota’s Conjecture

Conjecture (Rota 1971): F finite, then ∃k = k(F) :
exactly k excluded minors for

¨
M : E(M)→

GF(2)

F

...

«

Matroid representation
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Rota’s Conjecture

Conjecture (Rota 1971): F finite, then ∃k = k(F) :
exactly k excluded minors for

¨
M : E(M)→

GF(2)

F

...

«

• Proven for F ∈ {GF(2),GF(3),GF(4)}

Matroid representation
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Regular matroids

Theorem (Tutte 1958):
Exactly 3 excluded minors for

¨
M : E(M)→

GF(2)
GF(3)
GF(4)
GF(5)
GF(7)
...

«

Matroid representation
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Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for

¨
M : E(M)→

GF(2)
GF(3)
GF(4)
GF(5)
GF(7)
...

«

Matroid representation
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Excluded minors for near-regular¨
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Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for

¨
M : E(M)→

GF(2)

P

...

«
Why care?
• Complexity of algorithms

• Structure of ternary matroids

• Sharpening the knives for Rota’s Conjecture

Matroid representation
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Summary

• Matroid axioms abstract linear dependence

• Matroids occur everywhere

• Representation problem

• Excluded minors

• Near-regular matroids

Thank you for listening

Preprint at http://www.win.tue.nl/~svzwam/

The end

http://www.win.tue.nl/~svzwam/

