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Matroid theory
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Lemma. Given

E: finite set of vectors

I: collection of linearly independent subsets

then

•∅ ∈ I
• J ∈ I and  ⊆ J, then  ∈ I
• , J ∈ I and || < |J|, then

∃e ∈ J \  such that  ∪ {e} ∈ I

Matroid axioms
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Definition. Given

E: finite set

I: collection of subsets

such that

•∅ ∈ I
• J ∈ I and  ⊆ J, then  ∈ I
• , J ∈ I and || < |J|, then

∃e ∈ J \  such that  ∪ {e} ∈ I
Then M = (E,I) is a matroid.

Matroid axioms
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Forests in a graph

Forest .

Example
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Example: the Fano matroid
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• E = { points }

• I = {X ⊆ E in general position }

Incidence geometry!
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Strange example: the Non-Desargues
matroid

Incidence geometry?
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The representation problem

Problem. Is there a map

E→ Fn

preserving the dependencies of M = (E,I)?

Matroid representation



20/57

/ department of mathematics and computer science

Example: the Fano matroid
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Example: the Fano matroid
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Problem. Is there a dependency-preserving map

E(M)→
GF(2)

F

...

?

• “Yes” certified by vectors {1, . . . , n}

• How to certify “no”?

Matroid representation
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Theorem (Kuratowski):
Graph is planar⇔ no minor isomorphic to

Graph minors
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Reducing a set of vectors: deletion

Matroid minors
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Abstract definition
• Deletion: M\e := (E \ {e},{ ∈ I : e 6∈ })
• Contraction: M/e := (E \ {e},{ :  ∪ {e} ∈ I})
• Minors: Obtained from sequence of such steps

– Generate partial order
– Preserve representability

Matroid minors
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Excluded minors

Matroid minors
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Problem:
Is there a dependency-preserving map

¨
M : E(M)→

GF(2)

F

...

«

• How to certify the answer is “no”?

• By reducing to an excluded minor!

• Rota’s Conjecture: finitely many

Matroid representation
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Rota’s Conjecture

Conjecture (Rota 1971): F finite, then ∃k = k(F) :
exactly k excluded minors for

¨
M : E(M)→

GF(2)

F

...

«

• Proven for F ∈ {GF(2),GF(3),GF(4)}

Matroid representation
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Rota’s Conjecture

Theorem (Tutte 1958):
Exactly 1 excluded minor for

¨
M : E(M)→

GF(2)

GF(2)

...

«

namely
¨ «

Matroid representation
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Rota’s Conjecture

Conjecture (Rota 1971): F finite, then ∃k = k(F) :
exactly k excluded minors for

¨
M : E(M)→

GF(2)

F

...

«

F GF(2) GF(3) GF(4) GF(5)
k 1 3 7 ≥ 564a

aMayhew, Royle 2009

Matroid representation
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Regular matroids

Theorem (Tutte 1958):
Exactly 3 excluded minors for

¨
M : E(M)→

GF(2)
GF(3)
GF(4)
GF(5)
GF(7)
...

«

namely
¨

, ,
� �∗«

Matroid representation
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Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for

¨
M : E(M)→

GF(2)
GF(3)
GF(4)
GF(5)
GF(7)
...

«

Matroid representation
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Matroid representation
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Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for

¨
M : E(M)→

GF(2)

U1

...

«

Matroid representation
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Partial Fields

Part II
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Theorem (Tutte 1958):
Equivalent for matroid M:

• M regular

• M has totally unimodular representation over R

Definition:
Matrix A is totally unimodular ⇔ every subdetermi-
nant is in {−1,0,1}

Total unimodularity
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Definition: Partial field P := (R,G)

• R commutative ring

• G ⊆ R∗ group

• −1 ∈ G
Definition: Weak P-matrix:

• r × E matrix A over R

• det(B) ∈ G ∪ 0 ∀ r × r submatrix B

Theorem (vZ, Pendavingh 2009)

{B ⊆ E | |B| = r,det(A[r, B]) 6= 0}
is set of bases of matroid M.
(Strengthening of [Semple, Whittle 1996])

Partial fields
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Strong P-matrix
• Definition: Every subdeterminant in G ∪ 0
• Example: weak P-matrix of form [ A]

•⇒ every weak P-matrix equivalent to strong!

Example:

U0 = (Z,{−1,1})
Strong U0-matrix is totally unimodular

Partial fields
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Homomorphisms
Definition: φ : P1 → P2 is homomorphism if, for
p, q ∈ G1 ∪ 0,

• φ(1) = 1
• φ(p)φ(q) = φ(pq) ∈ G2 ∪ 0
• If p+q ∈ G∪0 then φ(p)+φ(q) = φ(p+q) ∈ G2∪0

Theorem (Semple, Whittle 1996):
A is strong P1-matrix
⇒
φ(A) is strong P2-matrix

Also, det(A[X, Y]) = 0⇔ det(φ(A)[X, Y]) = 0

Partial fields
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Product partial field

P1 × P2 := (R1 × R2, G1 ×G2)
Theorem (Pendavingh, vZ 2009):
Matroid representable over both P1 and P2
⇔
Matroid representable over P1 × P2

Partial fields
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Regular matroids
Theorem (Tutte 1958):
Equivalent for matroid M:

(i) M representable over GF(2) and GF(3)

(ii) M representable over U0 = (Z,{−1,1})
(iii) M representable over all fields

Partial fields
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Dyadic matroids
Theorem (Whittle 1995):
Equivalent for matroid M:

(i) M representable over GF(3) and GF(5)

(ii) M representable over D = (Z[12], 〈−1,2〉)
(iii) M representable over F unless χ(F) = 2

Partial fields
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Golden ratio matroids
Theorem (Vertigan (unpublished)

Pendavingh, vZ 2009):
Equivalent for matroid M:

(i) M representable over GF(4) and GF(5)

(ii) M representable over U0 = (R, 〈−1, τ〉)
(iii) M representable over GF(p) when p ≡ ±1 mod 5

τ is golden ratio, root of 2 − − 1 = 0

Partial fields
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Near-regular matroids
Theorem (Whittle 1997):
Equivalent for matroid M:

(i) M representable over GF(3) and GF(4) and GF(5)

(ii) M representable over U0 = (Q(α), 〈−1, α,1− α〉)
(iii) M representable over all fields with ≥ 3 elements

Hard implication is ()⇒ ()
Use Lift Theorem (Pendavingh, vZ 2009)

Partial fields
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No universal model

Maximum-sized rank-3 in 6p1 partial field (Oxley,
Vertigan, Whittle 1998)

Partial fields
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Partial Fields and Rota’s Conjecture

Part III
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Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for

¨
M : E(M)→

GF(2)
GF(3)
GF(4)
GF(5)
GF(7)
...

«

Rota’s Conjecture
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Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
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¨
M : E(M)→

GF(2)

U1

...

«

Rota’s Conjecture
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Non-unique representability

0



b

c

′ b′ c′

Rota’s Conjecture
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Recovering uniqueness
Connectivity!

• Splitter Theorem (Seymour 1981)

• Stabilizer Theorem (Whittle 1996)

• Blocking Sequences (Geelen et al. 2000)

• Branch Width (Geelen and Whittle 2002; Mayhew,
Whittle, vZ 2009)

• . . .

→ strategy for GF(5)

Rota’s Conjecture
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Theorem (Pendavingh, vZ 2009):
M 3-connected matroid.

• At least two inequivalent representations over
GF(5) ⇒ representable over GF(p) when p ≡ 1
mod 4

• At least three inequivalent representations over
GF(5) ⇒ representable over F if |F| ≥ 5

• At least five inequivalent representations over
GF(5) ⇒ six inequivalent representations

From partial fields

H6 = H5→ H4→ H3→ H2→ H1 = GF(5)

Quinary matroids
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Thank you for listening.

Preprints, slides at
http://www.win.tue.nl/~svzwam/

That’s all, folks!

http://www.win.tue.nl/~svzwam/

