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Matroid theory

ON THE ABSTRACT PROPERTIES OF LINEAR DEPENDENCE.!

By HassLErR WHITNEY.

1. Introduction. Let C,,C,,- - -, Cn be the columns of a matrix M.
Any subset of these columns is either linearly independent or linearly de-
pendent ; the subsets thus fall into two classes. These classes are not arbitrary;
for instance, the two following theorems must hold:

(a) Any subset of an independent set is independent.

(b) If N, and N,., are independent sets of p and p + 1 columns respec-
tively, then ¥, together with some column of N,,, forms an independent set
of p 4+ 1 columns.

There are other theorems not deducible from these; for in § 16 we give
an example of a system satisfying these two theorems but not representing any
matrix. Further theorems seem, however, to be quite difficult to find. Let
us call a system obeying (a) and (b) a “matroid.” The present paper is
devoted to a study of the elementary properties of matroids. The fundamental
question of completely characterizing systems which represent matrices is left
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Example

Linearly independent vectors in R”

A
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Matroid axioms

Lemma. Given
E: finite set of vectors
7: collection of linearly independent subsets
then
e Del
eJeZTandIC/, thenle?l
ol,J] €7 and [I| < |/|, then

dee/\IsuchthatIu{e} e
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Matroid axioms

Definition. Given
E: finite set
7. collection of subsets
such that
e Del
eJeZTandIC/, thenle?l
ol,J] €7 and [I| < |/|, then

dee/\IsuchthatIu{e} e
Then M = (E,7) is a matroid.
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Example

Forests in a graph

Forest I.
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Example

Forests in a graph

de € J\I such that Iu {e} forest.
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Example

Forests in a graph

Forest Ju {e}.
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Incidence geometry!

Example: the Fano matroid

e E = { points }
o7 ={XCEingeneral position }
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Incidence geometry?

Strange example: the Non-Desargues
matroid
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Matroid representation

The representation problem

Problem. Is there a map
E — [F"

preserving the dependencies of M = (E, 1)?
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Matroid representation

Example: the Fano matroid

1

e E = { points }
o7 ={XCEingeneral position }
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Matroid representation

Example: the Fano matroid

|
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Matroid representation

Problem. Is there a dependency-preserving map

E(M) —

e “Yes” certified by vectors {vi1,...,vn}
e How to certify “no”?
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Graph minors

Theorem (Kuratowski):
Graph is planar & no minor isomorphic to
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Matroid minors

Reducing a set of vectors: deletion

A
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Matroid minors

Reducing a set of vectors: projection
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Matroid minors

Reducing a set of vectors: projection

A
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Matroid minors

Reducing a set of vectors: projection
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Matroid minors

Abstract definition
e Deletion: M\e :=(E\{e}, {I€el:e &l})
e Contraction: M/e :=(E\ {e},{I:Iu{e} €l})
e Minors: Obtained from sequence of such steps

— Generate partial order
— Preserve representability
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Matroid minors

Excluded minors
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Matroid representation

Problem:
Is there a dependency-preserving map

E(M) —

e How to certify the answer is “no”?
e By reducing to an excluded minor!
e Rota’s Conjecture: finitely many
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Matroid representation

Rota’s Conjecture

Conjecture (Rota 1971): [ finite, then Ik = k(F) :
exactly k excluded minors for

{M . E(M) — . }

e Proven for F € {GF(2), GF(3), GF(4)}
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Matroid representation
Rota’s Conjecture

Theorem (Tutte 1958):
Exactly 1 excluded minor for

{M . E(M) —

.
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Matroid representation

Rota’s Conjecture

Conjecture (Rota 1971): [ finite, then Ik = k(F) :
exactly k excluded minors for

{M . E(M) — . }

F GF(2) GF(3) GF(4) GF(5)
k 1 3 7
9Mayhew, Royle 2009
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Matroid representation
Regular matroids

Theorem (Tutte 1958):
Exactly 3 excluded minors for

GF(2)
{M EM)— SO }

GF(5)
GF(7)

namely

()
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Matroid representation
Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for

. GF(3)

{M L E(M) — et
GF(5)

GF(7)

/ department of mathematics and computer science



Matroid representation




Matroid representation
Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for

. GF(3)

{M L E(M) — et
GF(5)

GF(7)

/ department of mathematics and computer science



Matroid representation

Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for
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Part II

Partial Fields
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Total unimodularity

Theorem (Tutte 1958):
Equivalent for matroid M:

e M reqgular
e M has totally unimodular representation over R

Definition:
Matrix A is totally unimodular < every subdetermi-
nantisin {—1,0,1}
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Partial fields

Definition: Partial field P :=

e R commutative ring

e G CR* group

e—1€eG
Definition: Weak P-matrix:

e r X E matrix A over R

edet(B) e GUO V r x r submatrix B
Theorem (vZ, Pendavingh 2009)

{BCE||B|=r,det(A[r,B]) #0}

Is set of bases of matroid M.
(Strengthening of [Semple, Whittle 1996])
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Partial fields

Strong P-matrix
e Definition: Every subdeterminantin GU O

e Example: weak P-matrix of form [ A]
e = every weak P-matrix equivalent to strong!

Example:
[UO — (Z, {_11 1})

Strong Ug-matrix is totally unimodular
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Partial fields

Homomorphisms
Definition: ¢ : P; — P, is homomorphism if, for
p,ge G, U0,

cp(1)=1
c p(p)e(q) =(pgq) € G2UO
elf p+geGuUO then p(p)+9(g)=9(p+qg) eGoUO0

Theorem (Semple, Whittle 1996):
A iIs strong P1-matrix

=

@(A) is strong Py-matrix

Also, det(A[X,Y]) =0 << det(p(A)[X,Y])=0
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Partial fields

Product partial field

P1 x Py :=(R1 X R, G1 x G2)

Theorem (Pendavingh, vZ 2009):

Matroid representable over both P; and P
=

Matroid representable over P71 x P>
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Partial fields

Regular matroids

Theorem (Tutte 1958):
Equivalent for matroid M:

(/) M representable over GF(2) and GF(3)
(if) M representable over Ug=(Z, {—1,1})
(iif) M representable over all fields
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Partial fields

Dyadic matroids

Theorem (Whittle 1995):
Equivalent for matroid M:

(/) M representable over GF(3) and GF(5)
(ii) M representable over D = (Z[%], (-1, 2))
(iif) M representable over [F unless x(F) = 2
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Partial fields

Golden ratio matroids

Theorem (Vertigan (unpublished)
Pendavingh, vZ 2009):

Equivalent for matroid M:
(/) M representable over GF(4) and GF(5)
(if) M representable over Ug = (R, (—1, 7))
(iif) M representable over GF(p) when p=+1 mod 5

T is golden ratio, root of x2—x—-1=0
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Partial fields

Near-regular matroids

Theorem (Whittle 1997):
Equivalent for matroid M:

(/) M representable over GF(3) and GF(4) and GF(5)
(if) M representable over Ug = (Q(a), (-1, a,1 — a))
(iif) M representable over all fields with > 3 elements

Hard implication is (i) = (ii)
Use Lift Theorem (Pendavingh, vZ 2009)
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Partial fields

No universal model

Maximum-sized rank-3 in %71 partial field (Oxley,
Vertigan, Whittle 1998)
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Part lil

Partial Fields and Rota’s Conjecture
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Rota’s Conjecture
Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for

. GF(3)

{M L E(M) — et
GF(5)

GF(7)
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Rota’s Conjecture

Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for
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Rota’s Conjecture

Non-unique representability
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Rota’s Conjecture

Recovering uniqueness
Connectivity!

e Splitter Theorem (Seymour 1981)

e Stabilizer Theorem (Whittle 1996)

e Blocking Sequences (Geelen et al. 2000)

e Branch Width (Geelen and Whittle 2002; Mayhew,
Whittle, vZ 2009)

— strategy for GF(5)
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Quinary matroids

Theorem (Pendavingh, vZ 2009):
M 3-connected matroid.

o At least two inequivalent representations over
GF(5) = representable over GF(p) when p =1
mod 4

e At least three inequivalent representations over
GF(5) = representable over Fif |F| > 5

e At least five inequivalent representations over
GF(5) = six inequivalent representations

From partial fields
He = Hs — Hg — H3 — Hy — H1 = GF(5)
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That’s all, folks!

Thank you for listening.

Preprints, slides at
http://www.win.tue.nl/~svzwam/
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