Partial Fields and Rota's Conjecture

Stefan van Zwam

Based on joint work with Rhiannon Hall, Dillon Mayhew, Rudi Pendavingh, and Geoff Whittle

TUe Technische Universiteit
Eindhoven
University of Technology

Seminar Incidence Geometry, Gent, Belgium, June 12, 2009

Where innovation starts

Overview

I. Matroids, representations, Rota's ConjectureIII. Partial fieldsIIII. Partial fields and Rota's Conjecture

Matroids, representations, Rota's Conjecture

Matroid theory

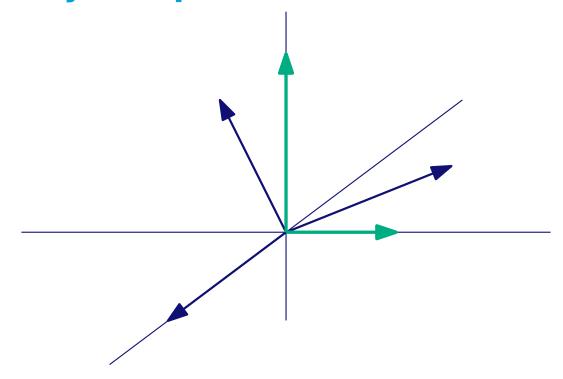
ON THE ABSTRACT PROPERTIES OF LINEAR DEPENDENCE.1

By Hassler Whitney.

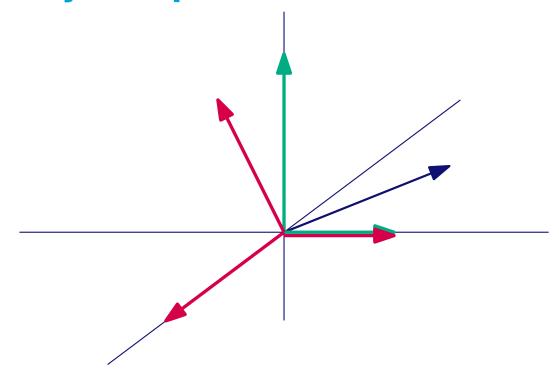
- 1. Introduction. Let C_1, C_2, \dots, C_n be the columns of a matrix M. Any subset of these columns is either linearly independent or linearly dependent; the subsets thus fall into two classes. These classes are not arbitrary; for instance, the two following theorems must hold:
 - (a) Any subset of an independent set is independent.
- (b) If N_p and N_{p+1} are independent sets of p and p+1 columns respectively, then N_p together with some column of N_{p+1} forms an independent set of p+1 columns.

There are other theorems not deducible from these; for in § 16 we give an example of a system satisfying these two theorems but not representing any matrix. Further theorems seem, however, to be quite difficult to find. Let us call a system obeying (a) and (b) a "matroid." The present paper is devoted to a study of the elementary properties of matroids. The fundamental question of completely characterizing systems which represent matrices is left unsolved. In place of the columns of a matrix we may equally well consider points or vectors in a Euclidean space, or polynomials, etc.

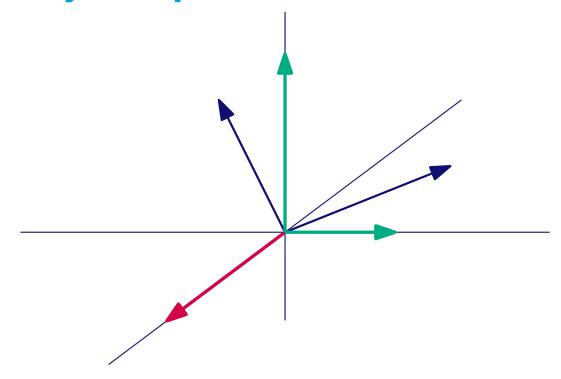
Linearly independent vectors in \mathbb{R}^n



Linearly independent vectors in \mathbb{R}^n



Linearly independent vectors in \mathbb{R}^n



Matroid axioms

Lemma. Given

- E: finite set of vectors
- \mathcal{I} : collection of linearly independent subsets

then

- $\emptyset \in \mathcal{I}$
- $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$
- $I, J \in \mathcal{I}$ and |I| < |J|, then

 $\exists e \in J \setminus I \text{ such that } I \cup \{e\} \in \mathcal{I}$

Definition. Given

E: finite set

 \mathcal{I} : collection of subsets

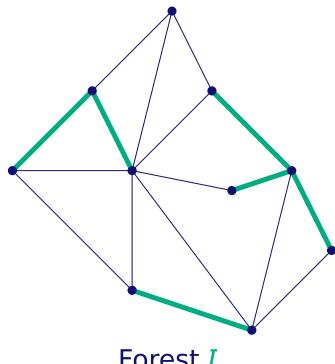
such that

- $\emptyset \in \mathcal{I}$
- $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$
- $I, J \in \mathcal{I}$ and |I| < |J|, then

 $\exists e \in I \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$

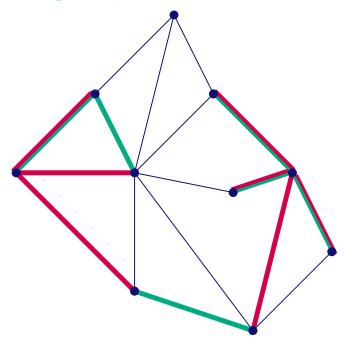
Then $M = (E, \mathcal{I})$ is a **matroid**.

Forests in a graph



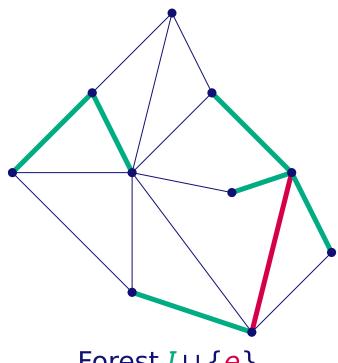
Forest *I*.

Forests in a graph

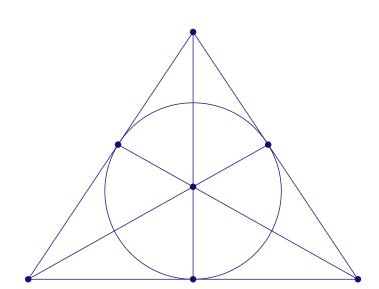


 $\exists e \in J \setminus I$ such that $I \cup \{e\}$ forest.

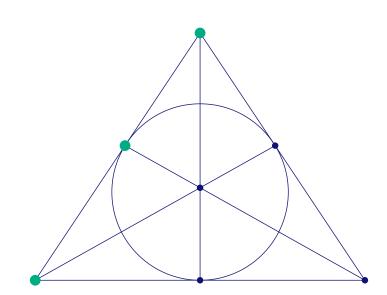
Forests in a graph



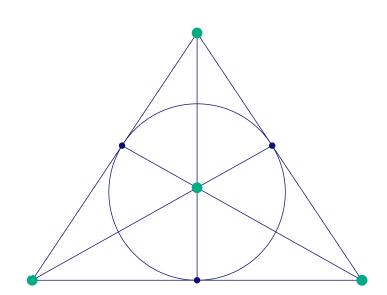
Forest $I \cup \{e\}$.



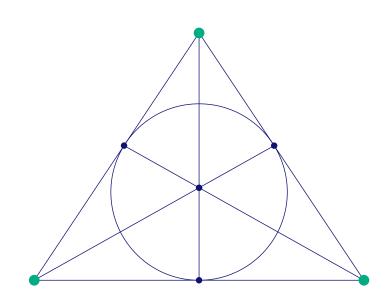
- *E* = { points }
- $\mathcal{I} = \{ X \subseteq E \text{ in general position } \}$



- *E* = { points }
- $\mathcal{I} = \{ X \subseteq E \text{ in general position } \}$

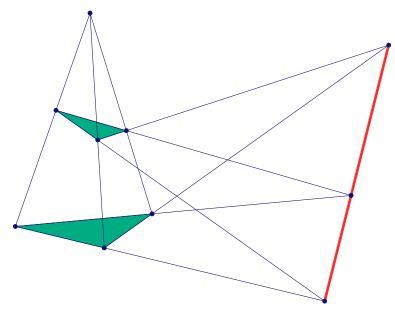


- *E* = { points }
- $\mathcal{I} = \{ X \subseteq E \text{ in general position } \}$

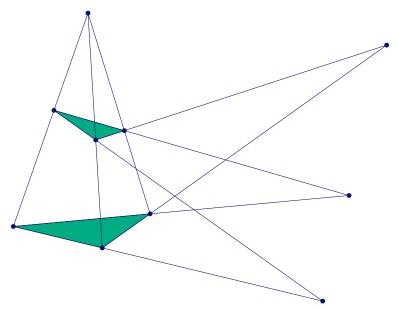


- *E* = { points }
- $\mathcal{I} = \{ X \subseteq E \text{ in general position } \}$

Strange example: the Non-Desargues matroid



Strange example: the Non-Desargues matroid

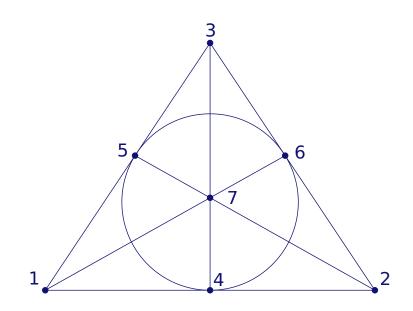


The representation problem

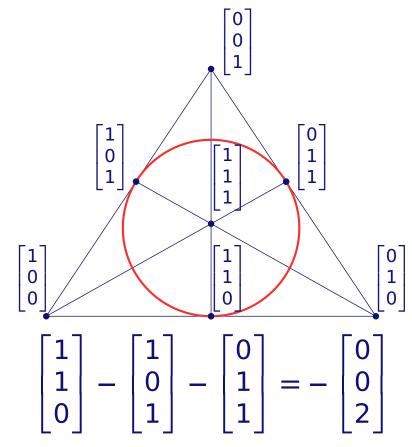
Problem. Is there a map

$$E \to \mathbb{F}^n$$

preserving the dependencies of $M = (E, \mathcal{I})$?



- *E* = { points }
- $\mathcal{I} = \{ X \subseteq E \text{ in general position } \}$



Problem. Is there a dependency-preserving map

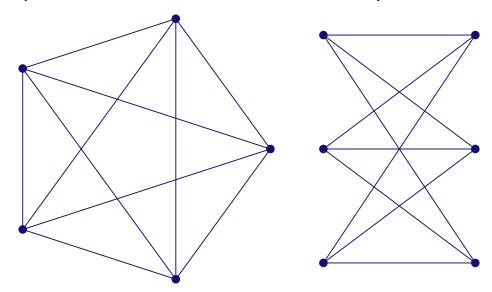
$$E(M) \rightarrow$$

- "Yes" certified by vectors $\{v_1, \ldots, v_n\}$
- How to certify "no"?

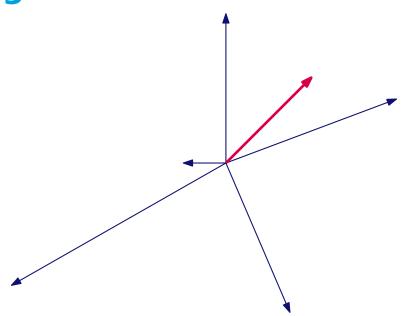
Graph minors

Theorem (Kuratowski):

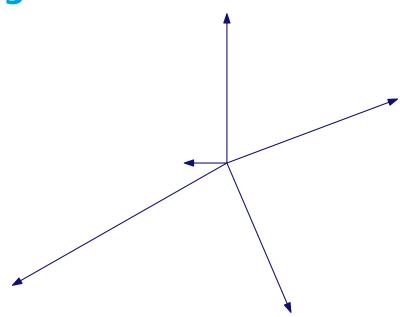
Graph is planar ⇔ no minor isomorphic to



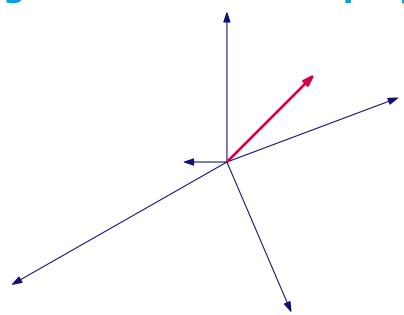
Reducing a set of vectors: deletion



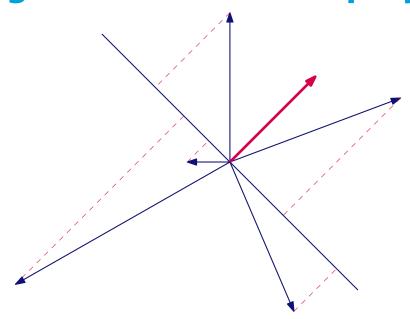
Reducing a set of vectors: deletion



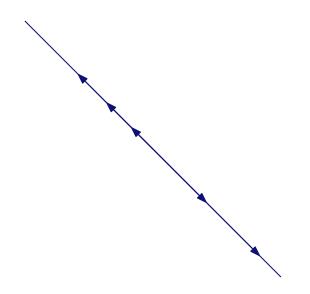
Reducing a set of vectors: projection



Reducing a set of vectors: projection



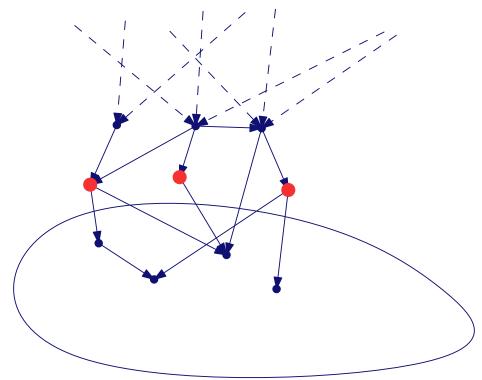
Reducing a set of vectors: projection



Abstract definition

- Deletion: $M \setminus e := (E \setminus \{e\}, \{I \in \mathcal{I} : e \notin I\})$
- Contraction: $M/e := (E \setminus \{e\}, \{I : I \cup \{e\} \in \mathcal{I}\})$
- Minors: Obtained from sequence of such steps
 - Generate partial order
 - Preserve representability

Excluded minors



Problem:

Is there a dependency-preserving map

$$E(M) \rightarrow \mathbb{F}$$

- How to certify the answer is "no"?
- By reducing to an excluded minor!
- Rota's Conjecture: finitely many

Rota's Conjecture

Conjecture (Rota 1971): \mathbb{F} finite, then $\exists k = k(\mathbb{F})$: exactly k excluded minors for

$$\left\{M:E(M)\to\right\}$$

• Proven for $\mathbb{F} \in \{GF(2), GF(3), GF(4)\}$

Rota's Conjecture

Theorem (Tutte 1958):

Exactly 1 excluded minor for

$$\left\{M: E(M) \to \bigcirc_{\mathsf{GF}(2)}\right\}$$

namely

Rota's Conjecture

Conjecture (Rota 1971): \mathbb{F} finite, then $\exists k = k(\mathbb{F})$: exactly k excluded minors for

$$\left\{M:E(M)\to\right\}$$

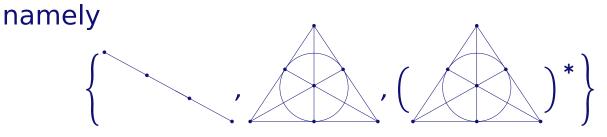
^aMayhew, Royle 2009

Regular matroids

Theorem (Tutte 1958):

Exactly 3 excluded minors for

$$\left\{M : E(M) \rightarrow \begin{array}{c} GF(2) \\ GF(3) \\ GF(4) \\ GF(5) \\ GF(7) \\ \vdots \end{array}\right\}$$



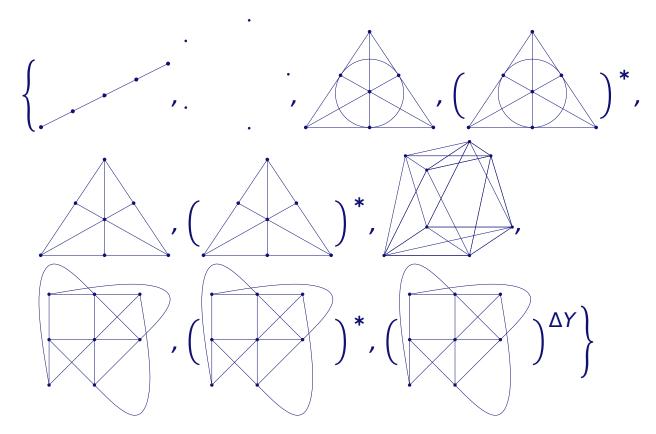
Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):

Exactly 10 excluded minors for

$$\left\{ M : E(M) \to \begin{array}{c} GF(3) \\ GF(4) \\ GF(5) \\ GF(7) \\ \vdots \end{array} \right\}$$

namely



Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):

Exactly 10 excluded minors for

$$\left\{M: E(M) \to \begin{array}{c} GF(3) \\ GF(4) \\ GF(5) \\ GF(7) \\ \vdots \end{array}\right\}$$

Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):

Exactly 10 excluded minors for

$$\left\{M:E(M)\to\bigcup_{\mathbb{I}}\right\}$$

Partial Fields

Theorem (Tutte 1958):

Equivalent for matroid M:

- M regular
- M has totally unimodular representation over $\mathbb R$

Definition:

Matrix A is totally unimodular \Leftrightarrow every subdeterminant is in $\{-1, 0, 1\}$

Partial fields

Definition: Partial field $\mathbb{P} := (R, G)$

- R commutative ring
- $G \subseteq R^*$ group
- \bullet $-1 \in G$

Definition: Weak ℙ-matrix:

- $r \times E$ matrix A over R
- $det(B) \in G \cup 0 \ \forall \ r \times r \ submatrix \ B$

Theorem (vZ, Pendavingh 2009)

$$\{B \subseteq E \mid |B| = r, \det(A[r, B]) \neq 0\}$$

is set of bases of matroid *M*. (Strengthening of [Semple, Whittle 1996])

Strong P-matrix

- Definition: Every subdeterminant in $G \cup 0$
- Example: weak ℙ-matrix of form [IA]
- ⇒ every weak P-matrix equivalent to strong!

Example:

$$\mathbb{U}_0 = (\mathbb{Z}, \{-1, 1\})$$

Strong U_0 -matrix is totally unimodular

Homomorphisms

Definition: $\varphi : \mathbb{P}_1 \to \mathbb{P}_2$ is homomorphism if, for $p, q \in G_1 \cup 0$,

- $\varphi(1) = 1$
- $\varphi(p)\varphi(q) = \varphi(pq) \in G_2 \cup 0$
- If $p+q \in G \cup 0$ then $\varphi(p)+\varphi(q)=\varphi(p+q) \in G_2 \cup 0$

Theorem (Semple, Whittle 1996):

A is strong \mathbb{P}_1 -matrix

 \Rightarrow

 $\varphi(A)$ is strong \mathbb{P}_2 -matrix

Also, $det(A[X, Y]) = 0 \Leftrightarrow det(\varphi(A)[X, Y]) = 0$

TU/e Technische Universiteit Eindhoven University of Technology

Product partial field

$$\mathbb{P}_1 \times \mathbb{P}_2 := (R_1 \times R_2, G_1 \times G_2)$$

Theorem (Pendavingh, vZ 2009):

Matroid representable over both \mathbb{P}_1 and \mathbb{P}_2

Matroid representable over $\mathbb{P}_1 \times \mathbb{P}_2$

Regular matroids

Theorem (Tutte 1958):

Equivalent for matroid M:

- (i) M representable over GF(2) and GF(3)
- (ii) M representable over $U_0 = (\mathbb{Z}, \{-1, 1\})$
- (iii) M representable over all fields

Dyadic matroids

Theorem (Whittle 1995):

Equivalent for matroid *M*:

- (i) M representable over GF(3) and GF(5)
- (ii) M representable over $\mathbb{D} = (\mathbb{Z}[\frac{1}{2}], \langle -1, 2 \rangle)$
- (iii) M representable over \mathbb{F} unless $\chi(\mathbb{F}) = 2$

Golden ratio matroids

Theorem (Vertigan (unpublished) Pendavingh, vZ 2009):

Equivalent for matroid *M*:

- (i) M representable over GF(4) and GF(5)
- (ii) M representable over $\mathbb{U}_0 = (\mathbb{R}, \langle -1, \tau \rangle)$
- (iii) M representable over GF(p) when $p \equiv \pm 1 \mod 5$

$$\tau$$
 is golden ratio, root of $x^2 - x - 1 = 0$

Near-regular matroids

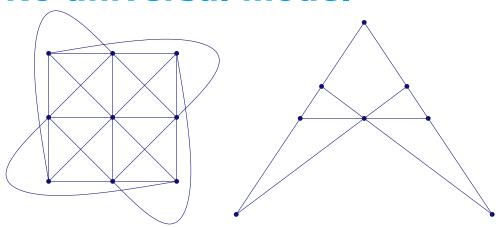
Theorem (Whittle 1997):

Equivalent for matroid *M*:

- (i) M representable over GF(3) and GF(4) and GF(5)
- (ii) M representable over $\mathbb{U}_0 = (\mathbb{Q}(\alpha), \langle -1, \alpha, 1 \alpha \rangle)$
- (iii) M representable over all fields with \geq 3 elements

Hard implication is $(i) \Rightarrow (ii)$ Use *Lift Theorem* (Pendavingh, vZ 2009)

No universal model



Maximum-sized rank-3 in $\sqrt[6]{1}$ partial field (Oxley, Vertigan, Whittle 1998)

Partial Fields and Rota's Conjecture

Rota's Conjecture

Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):

Exactly 10 excluded minors for

$$\left\{M: E(M) \to \begin{array}{c} GF(3) \\ GF(4) \\ GF(5) \\ GF(7) \\ \vdots \end{array}\right\}$$

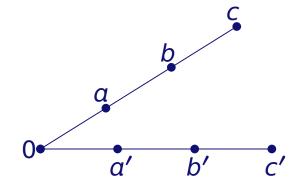
Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):

Exactly 10 excluded minors for

$$\left\{M:E(M)\to\bigcup_{\mathbb{D}}\right\}$$

Non-unique representability



Rota's Conjecture

Recovering uniqueness

Connectivity!

- Splitter Theorem (Seymour 1981)
- Stabilizer Theorem (Whittle 1996)
- Blocking Sequences (Geelen et al. 2000)
- Branch Width (Geelen and Whittle 2002; Mayhew, Whittle, vZ 2009)
- . . .
- \rightarrow strategy for GF(5)

Quinary matroids

Theorem (Pendavingh, vZ 2009):

M 3-connected matroid.

- At least two inequivalent representations over $GF(5) \Rightarrow$ representable over GF(p) when $p \equiv 1 \mod 4$
- At least three inequivalent representations over $GF(5) \Rightarrow$ representable over \mathbb{F} if $|\mathbb{F}| \geq 5$
- At least five inequivalent representations over
 GF(5) ⇒ six inequivalent representations

From partial fields

$$\mathbb{H}_6 = \mathbb{H}_5 \rightarrow \mathbb{H}_4 \rightarrow \mathbb{H}_3 \rightarrow \mathbb{H}_2 \rightarrow \mathbb{H}_1 = GF(5)$$

Thank you for listening.

Preprints, slides at
http://www.win.tue.nl/~svzwam/

