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Part I
Matroids and fragility
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What is a matroid?
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What is a matroid?
Definition. Given

E: finite set

I: collection of subsets

such that

•∅ ∈ I
• J ∈ I and  ⊆ J, then  ∈ I
• , J ∈ I and || < |J|, then

∃e ∈ J−  such that  ∪ {e} ∈ I

Then M = (E,I) is a matroid.
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What is a matroid?
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What is a matroid?
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Minors
• Deletion: M\e := (E− {e},{ ∈ I : e 6∈ })
• Contraction: M/e := (E− {e},{ :  ∪ {e} ∈ I})
• Minors: Obtained from sequence of such steps
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Contraction
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Contraction
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Contraction
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Minor order
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Excluded minors
Definition.
Matroid M is excluded minor for minor-closed class
C if

• M 6∈ C
• For all e: M\e and M/e in C
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Fragility
Historical definition.
Matroid M is almost-C for minor-closed class C if

• M 6∈ C
• For all e: M\e or M/e in C
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Fragility
Definition.
Matroid M is N -fragile for set of matroids N if

• For all e: M\e or M/e has no minor in N
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Example
Let G be a triangle-fragile graph.
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Example
Let G be a triangle-fragile graph.
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Part II
Excluded minors
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Kuratowski’s Theorem
Theorem.
A graph is planar if and only if it has no minor iso-
morphic to one of
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Wagner’s Conjecture
Theorem (Robertson and Seymour, Graph Mi-
nors XX)
Let C be a minor-closed class of graphs. There is a
finite number of excluded minors for C.
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Wagner’s Conjecture
Theorem (Robertson and Seymour, Graph Mi-
nors XX)
Let C be a minor-closed class of graphs. There is a
finite number of excluded minors for C.

Theorem (Robertson and Seymour)
There is a polynomial-time algorithm to test if G ∈ C.
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Irrelevant vertex
• Low tree width: dynamic programming

• High tree width: find irrelevant vertex
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Matroid Minor Project
Bad news. Let C be all real-representable matroids.

Theorem (Mayhew, Newman, Whittle 2009).
Let M be a real-representable matroid. Then there is
an excluded minor for C having M as minor.
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Minor order
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Matroid Minor Project
However. . .

Let Cq be all matroids representable over GF(q).

Conjecture (and work in progress by Geelen,
Gerards, Whittle).
Let C be a minor-closed subclass of Cq. There is a
finite number of excluded minors for C in Cq.
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Matroid Minor Project
However. . .

Let Cq be all matroids representable over GF(q).

Conjecture (and work in progress by Geelen,
Gerards, Whittle).
Let C be a minor-closed subclass of Cq. There is a
finite number of excluded minors for C in Cq.

Conjecture (and work in progress by Geelen,
Gerards, Whittle).
There is a polynomial-time algorithm to test if M ∈ C,
if representation given.
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Flexible element
• Low branch width: dynamic programming.

• High branch width: find flexible element: M\e and
M/e both have N-minor.
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Flexible element
• Low branch width: dynamic programming.

• High branch width: find flexible element: M\e and
M/e both have N-minor.

• . . . in other words: M is not N-fragile
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Bounded Canopy Conjecture
Conjecture (Geelen, Gerards, Whittle 2006).
∃k = k(N,F) :
If M is F-representable, strictly N-fragile then

bw(M) ≤ k
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Rota’s Conjecture
Let Cq be all matroids representable over GF(q).

Conjecture (Rota 1971).
There is a finite number of excluded minors for Cq.
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Rota’s Conjecture
Let Cq be all matroids representable over GF(q).

Conjecture (Rota 1971).
There is a finite number of excluded minors for Cq.

• Matroid Theorists’ Holy Grail

• Proven for q ≤ 4
• Outside scope of Matroid Minors Project
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Part III
(Work in) Progress
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Theorem (Mayhew, Whittle, vZ 2010+).
Rota’s Conjecture for GF(5) is implied by the
Bounded Canopy Conjecture.
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Guaranteed minors
Definition.
M is near-regular if representable over
GF(3),GF(4),GF(5), . . .

Theorem (Hall, Mayhew, vZ 2011).
Exactly 10 excluded minors for near-regular
matroids
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namely
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Guaranteed minors
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Ongoing work
• A fan lemma

• {U2,5, U3,5}-fragile. Write-up phase.

• {F−7 , (F
−
7 )

∗}-fragile. Major work needed.

• {F−7 , (F
−
7 )

∗, P8}-fragile with P8. Guessed the struc-
ture, need computer-aided check.
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Truemper graphs
Theorem (Truemper 1992).
{F7, F∗7 }-fragile matroids are ΔY-reducible.
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Truemper graphs
Theorem (Truemper 1992).
{F7, F∗7 }-fragile matroids are ΔY-reducible.

Need: explicit structure. Major tool:
Theorem (Mayhew, Whittle, vZ 2010+).
Equivalent are:

• G has a vital linkage of order 2;

• G has a spanning linkage of order 2 with no XX
linkage minor;

• G is linkage minor of some
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Slides, preprints at http://www.cwi.nl/~zwam/

The End

http://www.cwi.nl/~zwam/

