Fragility in matroid theory

Stefan van Zwam

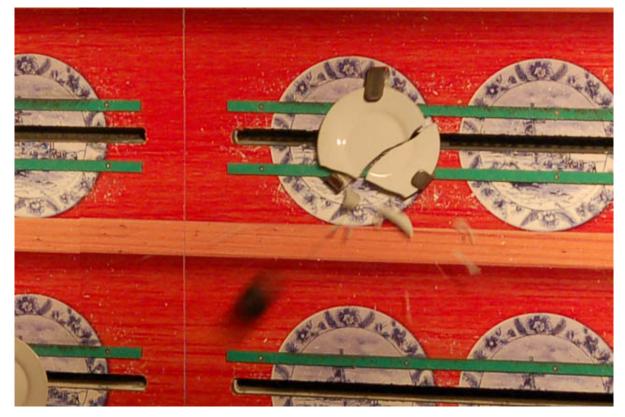
Based on joint and ongoing work with Carolyn Chun, Deborah Chun, Dillon Mayhew, and Geoff Whittle

DIAMANT Symposium, Heeze, The Netherlands. May 27, 2011

The table-of-contents slide

- I. Matroids and fragility
- II. Excluded minors
- III. (Work in) Progress

Part I Matroids and fragility



ON THE ABSTRACT PROPERTIES OF LINEAR DEPENDENCE.¹

By Hassler Whitney.

- 1. Introduction. Let C_1, C_2, \dots, C_n be the columns of a matrix M. Any subset of these columns is either linearly independent or linearly dependent; the subsets thus fall into two classes. These classes are not arbitrary; for instance, the two following theorems must hold:
 - (a) Any subset of an independent set is independent.
- (b) If N_p and N_{p+1} are independent sets of p and p+1 columns respectively, then N_p together with some column of N_{p+1} forms an independent set of p+1 columns.

There are other theorems not deducible from these; for in § 16 we give an example of a system satisfying these two theorems but not representing any matrix. Further theorems seem, however, to be quite difficult to find. Let us call a system obeying (a) and (b) a "matroid." The present paper is devoted to a study of the elementary properties of matroids. The fundamental question of completely characterizing systems which represent matrices is left unsolved. In place of the columns of a matrix we may equally well consider points or vectors in a Euclidean space, or polynomials, etc.

Definition. Given

E: finite set

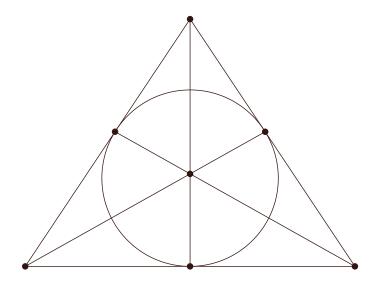
 \mathcal{I} : collection of subsets

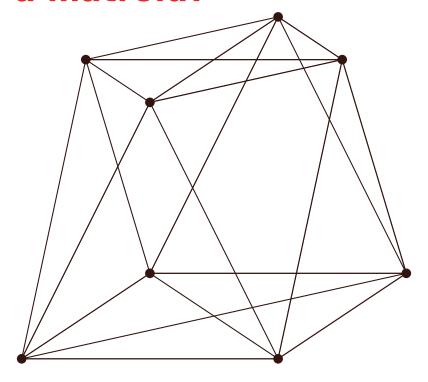
such that

- $\emptyset \in \mathcal{I}$
- $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$
- $I, J \in \mathcal{I}$ and |I| < |J|, then

$$\exists e \in J - I \text{ such that } I \cup \{e\} \in \mathcal{I}$$

Then $M = (E, \mathcal{I})$ is a **matroid**.

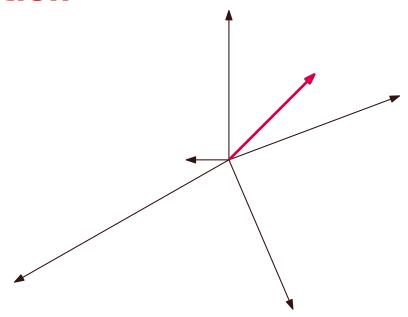




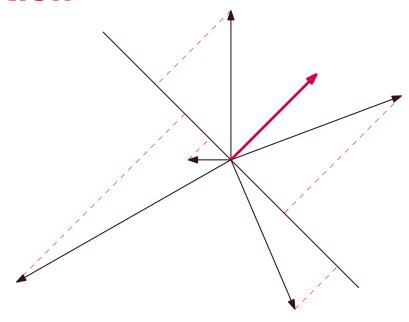
Minors

- Deletion: $M \setminus e := (E \{e\}, \{I \in \mathcal{I} : e \notin I\})$
- Contraction: $M/e := (E \{e\}, \{I : I \cup \{e\} \in \mathcal{I}\})$
- Minors: Obtained from sequence of such steps

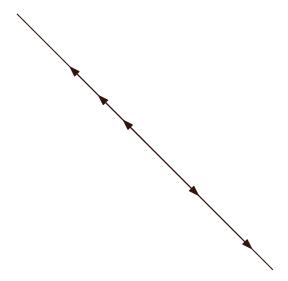
Contraction



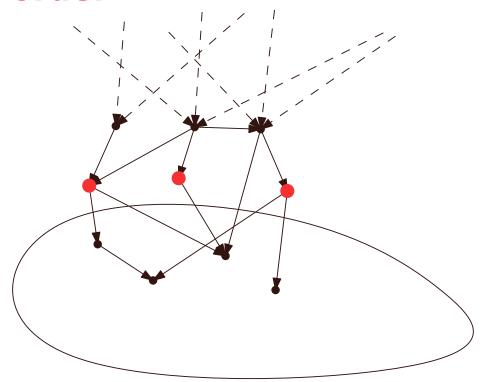
Contraction



Contraction



Minor order



Excluded minors

Definition.

Matroid M is excluded minor for minor-closed class \mathcal{C} if

- M ∉ C
- For all e: $M \setminus e$ and M/e in C

Fragility

Historical definition.

Matroid M is almost-C for minor-closed class C if

- M ∉ C
- For all e: $M \setminus e$ or M/e in C

Fragility

Definition.

Matroid M is \mathcal{N} -fragile for set of matroids \mathcal{N} if

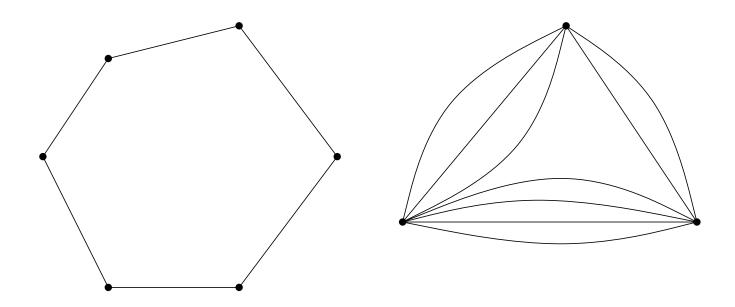
• For all e: $M \setminus e$ or M/e has no minor in \mathcal{N}

Example

Let G be a triangle-fragile graph.

Example

Let G be a triangle-fragile graph.

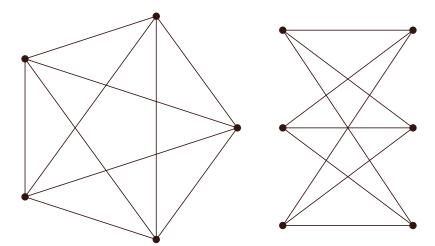


Part II Excluded minors

Kuratowski's Theorem

Theorem.

A graph is planar if and only if it has no minor isomorphic to one of



Wagner's Conjecture

Theorem (Robertson and Seymour, Graph Minors XX)

Let C be a minor-closed class of graphs. There is a finite number of excluded minors for C.

Wagner's Conjecture

Theorem (Robertson and Seymour, Graph Minors XX)

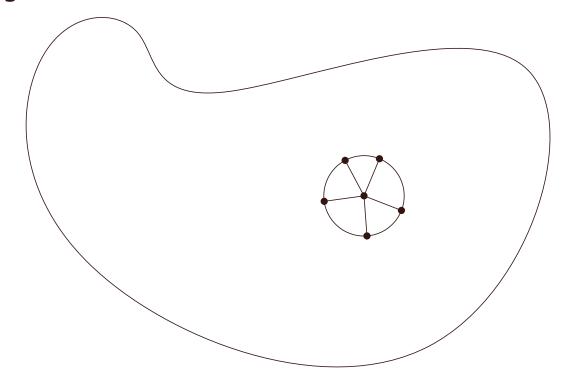
Let C be a minor-closed class of graphs. There is a finite number of excluded minors for C.

Theorem (Robertson and Seymour)

There is a polynomial-time algorithm to test if $G \in \mathcal{C}$.

Irrelevant vertex

- Low tree width: dynamic programming
- High tree width: find irrelevant vertex



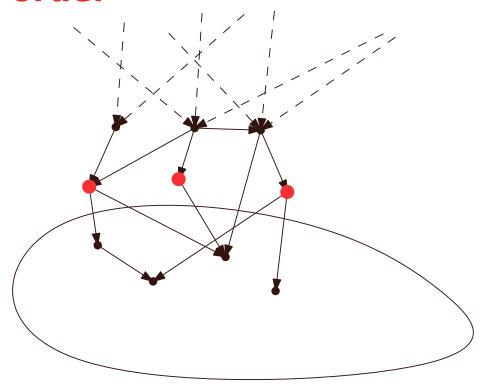
Matroid Minor Project

Bad news. Let C be all real-representable matroids.

Theorem (Mayhew, Newman, Whittle 2009).

Let M be a real-representable matroid. Then there is an excluded minor for C having M as minor.

Minor order



Matroid Minor Project

However...

Let C_q be all matroids representable over GF(q).

Conjecture (and work in progress by Geelen, Gerards, Whittle).

Let C be a minor-closed subclass of C_q . There is a finite number of excluded minors for C in C_q .

Matroid Minor Project

However...

Let C_q be all matroids representable over GF(q).

Conjecture (and work in progress by Geelen, Gerards, Whittle).

Let \mathcal{C} be a minor-closed subclass of \mathcal{C}_q . There is a finite number of excluded minors for \mathcal{C} in \mathcal{C}_q .

Conjecture (and work in progress by Geelen, Gerards, Whittle).

There is a polynomial-time algorithm to test if $M \in \mathcal{C}$, if representation given.

Flexible element

- Low branch width: dynamic programming.
- High branch width: find flexible element: M\e and M/e both have N-minor.

Flexible element

- Low branch width: dynamic programming.
- High branch width: find flexible element: M\e and M/e both have N-minor.
- . . . in other words: *M* is not *N-fragile*

Bounded Canopy Conjecture

Conjecture (Geelen, Gerards, Whittle 2006).

 $\exists k = k(N, \mathbb{F})$:

If M is \mathbb{F} -representable, strictly N-fragile then

$$bw(M) \le k$$

Rota's Conjecture

Let C_q be all matroids representable over GF(q).

Conjecture (Rota 1971).

There is a finite number of excluded minors for C_q .

Rota's Conjecture

Let C_q be all matroids representable over GF(q).

Conjecture (Rota 1971).

There is a finite number of excluded minors for C_q .

- Matroid Theorists' Holy Grail
- Proven for $q \leq 4$
- Outside scope of Matroid Minors Project

Part III (Work in) Progress

Theorem (Mayhew, Whittle, vZ 2010+).

Rota's Conjecture for GF(5) is implied by the Bounded Canopy Conjecture.

Guaranteed minors

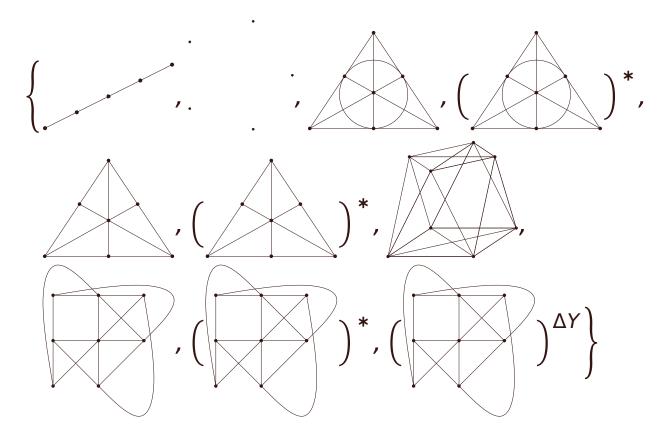
Definition.

M is near-regular if representable over GF(3), GF(4), GF(5), . . .

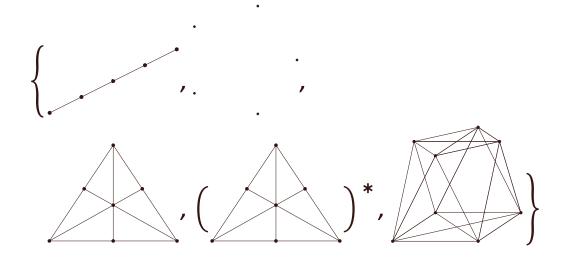
Theorem (Hall, Mayhew, vZ 2011).

Exactly 10 excluded minors for near-regular matroids

namely



Guaranteed minors



Ongoing work

- A fan lemma
- $\{U_{2,5}, U_{3,5}\}$ -fragile. Write-up phase.
- $\{F_7^-, (F_7^-)^*\}$ -fragile. Major work needed.
- $\{F_7^-, (F_7^-)^*, P_8\}$ -fragile with P_8 . Guessed the structure, need computer-aided check.

Truemper graphs

Theorem (Truemper 1992).

 $\{F_7, F_7^*\}$ -fragile matroids are ΔY -reducible.

Truemper graphs

Theorem (Truemper 1992).

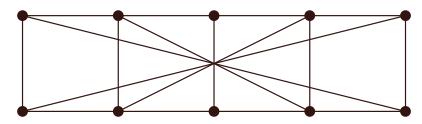
 $\{F_7, F_7^*\}$ -fragile matroids are ΔY -reducible.

Need: explicit structure. Major tool:

Theorem (Mayhew, Whittle, vZ 2010+).

Equivalent are:

- G has a vital linkage of order 2;
- G has a spanning linkage of order 2 with no XX linkage minor;
- G is linkage minor of some



Slides, preprints at http://www.cwi.nl/~zwam/

The End