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In today’s presentation:
 Matroids and fragility

» Excluded minors
* (Work in) Progress
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Part |
Matroids and fragility
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What is a matroid?

ON THE ABSTRACT PROPERTIES OF LINEAR DEPENDENCE.!

By HassLer WHITNEY.

1. Introduction. Tet ), C,,- - -, Cy be the columns of a matrix M.
Any subset of these columns is either linearly independent or linearly de-
pendent ; the subsets thus fall into two classes. These classes are not arbitrary;
for instance, the two following theorems must hold:

(a) Any subset of an independent set is independent.

(b) If N, and N,., are independent sets of p and p + 1 columns respec-
tively, then ¥, together with some column of N, forms an independent set
of p + 1 columns.

There are other theorems not deducible from these; for in § 16 we give
an example of a system satisfying these two theorems but not representing any
matrix, Further theorems seem, however, to be quite difficult to find. Let
ug call a system obeying (a) and (b) a “matroid.” The present paper is
devoted to a study of the elementary properties of matroids. The fundamental
question of completely characterizing systems which represent matrices is left
unsolved. In place of the columns of a matrix we may equally well consider
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Linearly independent vectors in R”

A
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Linearly independent vectors in R”

A
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Linearly independent vectors in R”

A
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Matroid axioms
Lemma. Given

E: finite set of vectors
Z: collection of linearly independent subsets
then
oDel
eJeZlandIC/, thenle?
oI,J €T and [I| < |/|, then

dee/—Isuchthatlu{e} e’
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Matroid axioms
Definition. Given

E: finite set

7Z: collection of subsets
such that
oDel
eJeZlandIC/, thenle?
oI,J€T and |I| < |/|, then

dee/—Isuchthatlu{e} e’
Then M = (E,7) is a matroid.
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What is a matroid?
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What is a matroid?
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Minors
o Deletion: M\e :=(E—-{e},{I€l:e &l})
o Contraction: M/e :=(E—-{e},{I:ITu{e} €l})
e Minors: Obtained from sequence of such steps
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Contraction
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Contraction
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Contraction
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Minor order
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Excluded minors
Definition.
Matroid M is excluded minor for minor-closed class
Cif
oM¢g(C
o For all e: M\e and M/e inC
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Kuratowski’s Theorem

Theorem.
Exactly two excluded minors for planar graphs:
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Fragility
First definition.
Matroid M is almost-C for minor-closed class C if

oM¢g(C
e For all e: M\eor M/einC

Stefan van Zwam Fragility in matroid theory



20/54

Example
Let G be an almost A-minor-free graph.
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Example
Let G be an almost A-minor-free graph.
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Example

Theorem (Gubser 1996).
Let G be a 3-connected almost-planar graph. Then

G is a member of
BUMUHLUH>.

Fragility in matroid theory
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Fragility
Definition.
Matroid M is N-fragile for set of matroids N if

o For all e: at most one of M\e and M/e has a
minor in \.
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Wagner’s Conjecture

Theorem (Robertson and Seymour, Graph Mi-
nors XX)

Let C be a minor-closed class of graphs. There is a
finite number of excluded minors for C.
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Waghner’s Conjecture

Theorem (Robertson and Seymour, Graph Mi-
nors XX)

Let C be a minor-closed class of graphs. There is a
finite number of excluded minors for C.

Theorem (Robertson and Seymour)
There is a polynomial-time algorithm to test if G € C.



Irrelevant vertex
o Low tree width: dynamic programming

» High tree width: find irrelevant vertex

2
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Matroid Minors Project
Bad news. Let C be all real-representable matroids.

Theorem (Mayhew, Newman, Whittle 2009).
Let M be a real-representable matroid. Then there is
an excluded minor for C having M as minor.
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Minor order
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Matroid Minors Project
However. ..

Let Cq be all matroids representable over GF(q).

Conjecture (and work in progress by Geelen,

Gerards, Whittle).
Let C be a minor-closed subclass of Cq. There is a

finite number of excluded minors for C in Cg.
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Matroid Minors Project
However...

Let Cq be all matroids representable over GF(q).

Conjecture (and work in progress by Geelen,

Gerards, Whittle).
Let C be a minor-closed subclass of Cq. There is a

finite number of excluded minors for C in Cg.

Conjecture (and work in progress by Geelen,

Gerards, Whittle).
There is a polynomial-time algorithm to test if M € C,

If representation given.
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Flexible element
e Low branch width: dynamic programming.

» High branch width: find flexible element: M\e and
M/e both have N-minor.
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Flexible element
e Low branch width: dynamic programming.

» High branch width: find flexible element: M\e and
M/e both have N-minor.

o ...in other words: M is not N-fragile
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Bounded Canopy Conjecture

Conjecture (Geelen, Gerards, Whittle 2006).
dk = k(N, ) :
If M is F-representable, strictly N-fragile then

bw(M) < k
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Rota’s Conjecture
Let Cq be all matroids representable over GF(q).

Conjecture (Rota 1971).
There is a finite number of excluded minors for Cg.
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Rota’s Conjecture
Let Cq be all matroids representable over GF(q).

Conjecture (Rota 1971).
There is a finite number of excluded minors for Cg.

e Matroid Theorists’ Holy Grail

e Proven forg <4
» Outside scope of Matroid Minors Project
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Part Il
(Work in) Progress
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Theorem (Mayhew, Whittle, vZ 2010+).
Rota’'s Conjecture for GF(5) is implied by the
Bounded Canopy Conjecture.
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Guaranteed minors

Definition.

M is near-regular if representable over
GF(3), GF(4), GF(5),...

Theorem (Hall, Mayhew, vZ 2011).
Exactly 10 excluded minors for near-regular
matroids
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Guaranteed minors
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Sketch of proof

B basis in one of M, M[A]
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B basis in one of M, M[A]
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Sketch of proof

B basis in one of M, M[A]
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Sketch of proof

Essential properties of M and A:
e “Bad” submatrix
» Guaranteed minor N
» 3-connected
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Where’s N?
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Where’s N?

N — fraqile
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Putting it together
o N-fragile minor
» Add back a, b, u, v for “bad” submatrix
» Repair connectivity

N — fragile
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Putting it together
o N-fragile minor
o Add back a, b, u, v for “bad” submatrix

e Repair connectivity

N — fragile
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Ongoing work
o A fan lemma
o {Uy 5, U3 5 }-fragile. Write-up phase.
o {F5, (F7)* }-fragile. Major work needed.

o {F7,(F7)*, Pg}-fragile with Pg. Guessed the struc-
ture, need computer-aided check.
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Fans
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{F7,(F7)*}-fragile matroids
Significant subclass: U> 4-fragile matroids.

Theorem (Oxley 1992).
Every U, 4-fragile matroid is a circuit-hyperplane re-

laxation of a binary matroid.

Fragility in matroid theory

Stefan van Zwam



52/54

{F7,(F7)*}-fragile matroids
Significant subclass: U 4-fragile matroids.

Theorem (Oxley 1992).
Every U, 4-fragile matroid is a circuit-hyperplane re-

laxation of a binary matroid.
» Huge class, no bound on branch width

Fragility in matroid theory

Stefan van Zwam



52/54

{F7,(F7)*}-fragile matroids
Significant subclass: U 4-fragile matroids.

Theorem (Oxley 1992).
Every U, 4-fragile matroid is a circuit-hyperplane re-

laxation of a binary matroid.
» Huge class, no bound on branch width
o If representable, then one of the following:

» Generalized whirl
» Relaxation of {F5, F; }-fragile, binary matroid
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Truemper graphs

Theorem (Truemper 1992).
{F7, FJ }-fragile matroids are AY-reducible.
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Truemper graphs

Theorem (Truemper 1992).
{F7, F }-fragile matroids are AY-reducible.

Need: explicit structure. Major tool:
Theorem (Mayhew, Whittle, vZ 2010+).
Equivalent are:

G has a vital linkage of order 2;

G has a spanning linkage of order 2 with no XX
linkage minor;

G is linkage minor of some
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The End
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