The structure of graphs with a vital linkage of order 2

Stefan van Zwam

Department of Mathematics Princeton University

Based on joint and ongoing work with Carolyn Chun, Deborah Chun, Dillon Mayhew, and Geoff Whittle

Cycles Conference, Nashville TN, May 30 – June 2, 2012

In today's presentation:

- Matroids and Rota's Conjecture
- Fragility
- Linkages

Part I Matroids and Rota's Conjecture

What is a matroid?

ON THE ABSTRACT PROPERTIES OF LINEAR DEPENDENCE.1

By Hassler Whitney.

- 1. Introduction. Let C_1, C_2, \dots, C_n be the columns of a matrix M. Any subset of these columns is either linearly independent or linearly dependent; the subsets thus fall into two classes. These classes are not arbitrary; for instance, the two following theorems must hold:
 - (a) Any subset of an independent set is independent.
- (b) If N_p and N_{p+1} are independent sets of p and p+1 columns respectively, then N_p together with some column of N_{p+1} forms an independent set of p+1 columns.

There are other theorems not deducible from these; for in § 16 we give an example of a system satisfying these two theorems but not representing any matrix. Further theorems seem, however, to be quite difficult to find. Let us call a system obeying (a) and (b) a "matroid." The present paper is devoted to a study of the elementary properties of matroids. The fundamental question of completely characterizing systems which represent matrices is left unsolved. In place of the columns of a matrix we may equally well consider points or vectors in a Euclidean space, or polynomials, etc.

Linearly independent vectors in \mathbb{R}^n

• Finite set of vectors:

$$E = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 5 \\ 6 \end{bmatrix}, \begin{bmatrix} 7 \\ 8 \end{bmatrix} \right\}$$

• Circuits: minimal dependent subsets.

$$1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} -2 \begin{bmatrix} 3 \\ 4 \end{bmatrix} +1 \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} -3 \begin{bmatrix} 5 \\ 6 \end{bmatrix} +2 \begin{bmatrix} 7 \\ 8 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Linearly independent vectors in \mathbb{R}^n

• Finite set of vectors:

$$E = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 5 \\ 6 \end{bmatrix}, \begin{bmatrix} 7 \\ 8 \end{bmatrix} \right\}$$

• Circuits: minimal dependent subsets.

$$1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} -2 \begin{bmatrix} 3 \\ 4 \end{bmatrix} +1 \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} -3 \begin{bmatrix} 5 \\ 6 \end{bmatrix} +2 \begin{bmatrix} 7 \\ 8 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$4 \begin{bmatrix} 1 \\ 2 \end{bmatrix} -6 \begin{bmatrix} 3 \\ 4 \end{bmatrix} +2 \begin{bmatrix} 7 \\ 8 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Matroid axioms

Lemma. Given

E: finite set of vectors

 \mathcal{C} : collection of minimal lin. dependent subsets

then

- Ø ∉ C
- $C, D \in \mathcal{C}$ and $C \subseteq D$ then C = D
- $C, D \in \mathcal{C}$ and $e \in C \cap D$ then have $F \subseteq C \cup D e$ and $F \in \mathcal{C}$

Matroid axioms

Definition. Given

E: finite set

 \mathcal{C} : collection of subsets

such that

- Ø ∉ C
- $C, D \in \mathcal{C}$ and $C \subseteq D$ then C = D
- $C, D \in \mathcal{C}$ and $e \in C \cap D$ then have $F \subseteq C \cup D e$ and $F \in \mathcal{C}$

Then M = (E, C) is a **matroid**.

Representability

Representation of M over field \mathbb{F} : circuit-preserving map

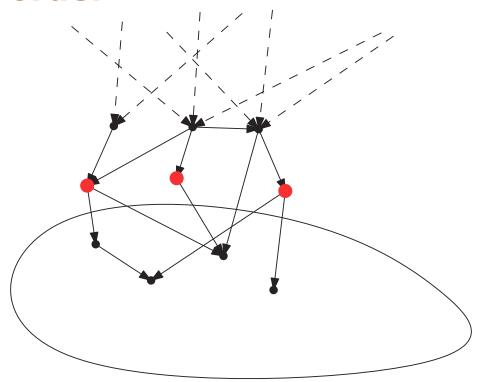
$$A: E(M) \to \mathbb{F}^r$$

for some r > 0.

Minors

- Deletion: $M \setminus e := (E \{e\}, \{C \in \mathcal{C} : e \notin C\})$
- Contraction: $M/e := (E \{e\}, \{C : stuff\})$
- Minor: Obtained from sequence of such steps

Minor order



Excluded minors

Definition.

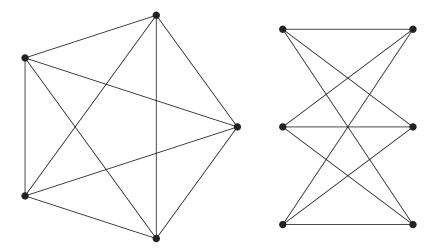
Matroid M is excluded minor for minor-closed class $\mathcal X$ if

- M ∉ X
- For all e: $M \setminus e$ and M/e in \mathcal{X}

Kuratowski's Theorem

Theorem.

Exactly two excluded minors for planar graphs:



Rota's Conjecture

Let \mathcal{X}_q be all matroids representable over GF(q).

Conjecture (Rota 1971).

There is a finite number of excluded minors for \mathcal{X}_q .

Rota's Conjecture

Let \mathcal{X}_q be all matroids representable over GF(q).

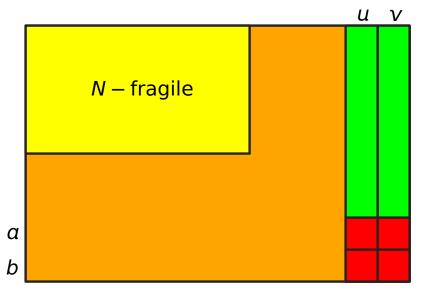
Conjecture (Rota 1971).

There is a finite number of excluded minors for \mathcal{X}_q .

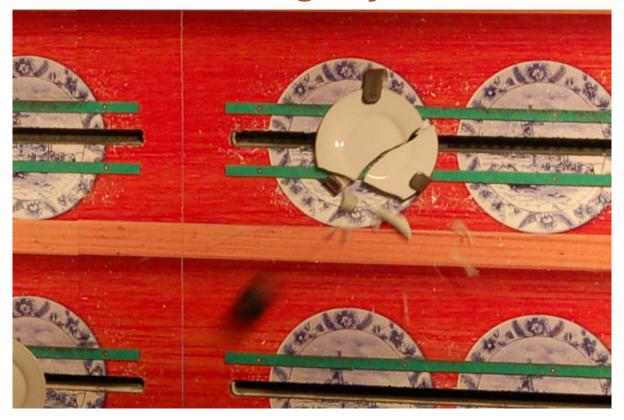
- Matroid Theorists' Holy Grail
- Proven for $q \leq 4$

Rota's Conjecture for GF(5)

- (Mayhew, Whittle, vZ): follows from Matroid Minors Structure Theory
- Goal: find them explicitly
- (Royle, Mayhew): computation: > 500
- Know lots about structure:



Part II Fragility



Excluded minors

Definition.

Matroid M is excluded minor for minor-closed class $\mathcal X$ if

- M ∉ X
- For all e: $M \setminus e$ and M/e in \mathcal{X}

Fragility

First definition.

Matroid M is almost- \mathcal{X} for minor-closed class \mathcal{X} if

- M ∉ X
- For all e: $M \setminus e$ or M/e in \mathcal{X}

Example

Theorem (Gubser 1996).

Let *G* be a 3-connected almost-planar graph. Then *G* is a member of

 $\mathcal{B} \cup \mathcal{M} \cup \mathcal{H}_1 \cup \mathcal{H}_2$.

Fragility

Definition.

Matroid M is \mathcal{N} -fragile for set of matroids \mathcal{N} if

• For all e: **at most one** of $M \setminus e$ and M/e has a minor in \mathcal{N} .

Problem.

Characterize the binary $\{F_7, F_7^*\}$ -fragile matroids.

Problem.

Characterize the binary $\{F_7, F_7^*\}$ -fragile matroids.

Theorem (Truemper 1992).

 $\{F_7, F_7^*\}$ -fragile matroids are ΔY -reducible.

Problem.

Characterize the binary $\{F_7, F_7^*\}$ -fragile matroids.

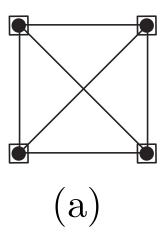
Theorem (Truemper 1992).

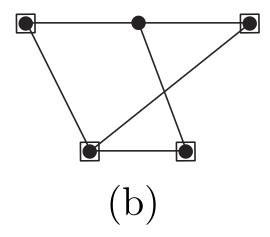
 $\{F_7, F_7^*\}$ -fragile matroids are ΔY -reducible.

Need: explicit structure.

Problem.

Characterize the binary $\{F_7, F_7^*\}$ -fragile matroids.





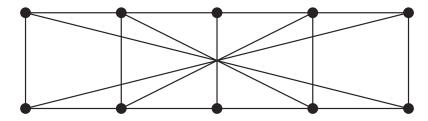
Part III Linkages

Truemper graphs

Theorem (Mayhew, Whittle, vZ 2010+).

Equivalent are:

- G has vital linkage of order 2;
- G has chordless spanning linkage of order 2 with no XX linkage minor;
- *G* is linkage minor of some



Slides, preprints at http://www.math.princeton.edu/~svanzwam/

The End