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A talk in 4 parts
• I. Matroids, representations

• II. Kahn’s Conjecture

• III. The prime field case

• IIII. Arbitrary fields
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Part I
Matroids, representations
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Linear codes
Definition.
Let F be finite field. C ⊆ Fn is an [n, k, d] linear code
over F if

(i) C is linear subspace of dimension k

(ii) The minimum weight is ≥ d
Definition.
For c ∈ Fn, support of c:

‖c‖ := { ∈ [n] : c 6= 0}.
The weight of c: size of support.
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Linear codes
Definition.
Let F be finite field. C ⊆ FE is an [E, k, d] linear code
over F if

(i) C is linear subspace of dimension k

(ii) The minimum weight is ≥ d
Definition.
For c ∈ FE, support of c:

‖c‖ := { ∈ E : c 6= 0}.
The weight of c: size of support.
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Matroids
Definition: Elementary word: c 6= 0, inclusionwise
minimal support.

Theorem.
Define

C∗ := {‖c‖ : c ∈ C, eementry}.

Then C∗ is set of cocircuits of a matroid, M(C).
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Matroids
Theorem.
Define

C∗ := {‖c‖ : c ∈ C, eementry}.

Then C∗ is set of cocircuits of a matroid, M(C).

(Co)circuit axioms
C∗ is set of cocircuits of a matroid if and only if

•∅ 6∈ C∗

• C,D ∈ C∗ and C ⊆ D then C = D

• C,D ∈ C∗, C 6= D, e ∈ C∩D, then (C∪D)−e contains
a cocircuit
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Usual suspects
Duality/dual code C⊥ := {d : 〈c, d〉 = 0 ∀c ∈ C}

M(C⊥) = M(C)∗

Deletion/puncturing C \e: remove coordinate in-
dexed by e from each word

M(C\e) = M(C)\e
Contraction/shortening C/e: restrict to words

having ce = 0, then remove coordinate

M(C/e) = M(C)/e



9/49

Stefan van Zwam On Inequivalent Representations

Matrices
Definition.
Generator matrix A: rows form basis of C
Parity check matrix H: rows form basis of C⊥

c ∈ C ⇐⇒ HcT = 0

Write M[A] for M(C).
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The main question:
When is M(C1) = M(C2)?
When is M[A1] = M[A2]?

Interpretations:

• Algorithm

• Counting
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Algorithm
Theorem (Král’ (2007), basically)
If M[A1] has bounded branch width, can test in poly-
nomial time if M[A1] = M[A2].

Conjecture (Geelen, Gerards, Whittle)
There is always a polynomial-time algorithm to test
if M[A1] = M[A2].
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Counting
• Exact, for given matroid: basically previous slide.

• Qualitatively: upper bounds.
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Part II
Kahn’s Conjecture
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Easy cases
Theorem.
If C1 and C2 binary, then

M(C1) = M(C2) ⇐⇒ C1 = C2.

Theorem (Brylawski, Lucas).
If C1 and C2 ternary, then

M(C1) = M(C2) ⇐⇒ C1 = C′2
where some coordinates of C2 were scaled by −1 to
get C′2.
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Operations

E(M \ )→

E(M \ )→

A1

A2
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Operations

E(M \ )→

E(M \ )→

A1

A2

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
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Operations

E(M \ )→

E(M \ )→

A1

A2
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Operations

E(M \ )→

E(M \ )→

1

1

1

1



19/49

Stefan van Zwam On Inequivalent Representations

Operations

E(M \ )→

E(M \ )→

1

1

1

1

0

0

0

0

0

0
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Operations

E(M \ )→

E(M \ )→

1

1

1

1

0

0

0

0

0

0
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Operations

E(M \ )→

E(M \ )→

1

1

1

1

0

0

0

0

0

0

1

1 1

1

1 1
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1
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No bound?
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Relief
Theorem (Kahn 1981).
If A1, A2 quaternary, M[A1] 3-connected,
M[A1] = M[A2] then A1, A2 related through

• Row operations

• Column scaling

• Field automorphism



24/49

Stefan van Zwam On Inequivalent Representations

Kahn’s Conjecture
Conjecture.
For each F, there is c such that each 3-connected M
has at most c inequivalent representations.
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Hurray!
Theorem (Oxley, Vertigan, Whittle 1995).
For GF(5), each 3-connected M has at most 6
inequivalent representations.
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Alas.
Theorem (Oxley, Vertigan, Whittle 1995).
For GF(5), each 3-connected M has at most 6
inequivalent representations.

Theorem (Oxley, Vertigan, Whittle 1995).
Kahn’s Conjecture is false for all larger fields.
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Stabilizers

AN
AM
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Stabilizers

AN
AM
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Stabilizer
Whittle’s Stabilizer Theorem (1999).
If N is not a stabilizer for a class, it will show after 2
steps.

Corollary 4.
U2,4 stabilizes 3-connected quaternary matroids.

Corollary 5.
U2,5, U3,5 stabilize 3-connected quinary matroids.
U2,4 stabilizes remaining 3-connected quinary ma-
troids.
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Counterexamples: swirls
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Counterexamples: spikes
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New conjecture
Conjecture.
For each F, there is c such that each 4-connected M
has at most c inequivalent representations.
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Counterexamples: maces
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New conjecture
Conjecture.
For each F, there are c, k such that each k-connected
M has at most c inequivalent representations.
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Part III
The prime field case
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The result
Theorem (Geelen, Whittle 2011+).
For each GF(p) there is c such that each
4-connected M has at most c inequivalent
representations.

Proof (idea).
Characterize “worst offenders,” bound their size.
Details: about 275 pages.
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Freedom
Definition.
{e, ƒ} is clonal pair if exchanging them is
isomorphism.

Definition.
e is fixed if no extension has independent
clonal pair {e, ƒ}.

Corollary.
If e fixed, then representation of M\e
extends uniquely.



38/49

Stefan van Zwam On Inequivalent Representations

Freedom
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k-coherence
Definition.
M is k-coherent if 3-connected and has no swirl-like
flower with ≥ k petals.
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Worst offenders
Definition.
A k-skeleton for GF(p) is 3-connected M with

• M is not wheel, whirl of rank ≥ 3
• If e fixed then M\e not k-coherent

• If e cofixed then M/e not k-coherent
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Chain theorem for skeletons
Theorem (Geelen, Whittle 2011+).
Let M be nonempty k-skeleton. One of these situa-
tions applies:

(i) M\e or M/e is k-skeleton for some e

(ii) M/p\q is k-skeleton for some clonal pair {p, q}

(iii) Special structure stuff that needs ≥ 20ish
elements and 3- or 4-element reductions.

Work in progress (Hall, Mayhew, vZ).
Use this (and a computer) to get explicit bound on
5-coherent, GF(7).
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How to do it by hand?
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How to do it in Sage?

def is_clonal_pair(M,e,f):
morphism = {}
for x in M.groundset():

morphism[x] = x
morphism[e] = f
morphism[f] = e
return M.is_isomorphism(M, morphism)

Size 4 5 6 7 8 9 10 11 12 13
Skeletons 1 2 4 10 28 18 20 16∗ 28∗ ???
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Part IV
Arbitrary fields
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New conjecture
Conjecture.
For each finite F, there are c, k such that
each k-connected M has at most c inequivalent
representations.

“Theorem” (Geelen, Gerards, Huynh, vZ).
True!

(Note: proof gives horrible bounds on c, k).
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New connectivity
Definition.
M is (ƒ , k)-connected if, for each -separation (A,B),
 ≤ k,

min{|A|, |B|} ≤ ƒ ().

Lemma.
If M is (ƒ , k)-connected, and ƒ non-decreasing, then
M\e or M/e is (2ƒ , k)-connected.

Lemma.
If M is simple, (ƒ , k)-connected, and critical, then
|E(M)| ≤ 2r(M).
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Chain theorem
“Theorem” (Geelen, Gerards, Huynh, vZ).
Let ƒ grow fast, M huge, (ƒ , k)-connected. Then have
(ƒ , k)-connected M′ with

|E(M)| − |E(M′)| ≤ 2.
Moreover, can protect a small set X.
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Constraining freedom
‘Theorem’ (Geelen, vZ).
If T is tangle of M (representable over GF(q)),
then the nonfixed elements are in a T -small set
of bounded order.

Observation.
(ƒ , k)-connectivity gives natural tangle!
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Slides at
http://www.math.princeton.edu/~svanzwam/

The End

http://www.math.princeton.edu/~svanzwam/

