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A talk in 4 parts
e |. Matroids, representations

e Il. Kahn’s Conjecture
e lll. The prime field case
e llll. Arbitrary fields
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Part |
Matroids, representations
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Linear codes

Definition.
Let F be finite field. CC F" is an [n, k, d] linear code
over [ if

(/) C is linear subspace of dimension k
(/1) The minimum weightis > d

Definition.
For c e F", support of c:

lcll:=={te[n]:c;#0}.

The weight of c: size of support.
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Linear codes

Definition.
Let F be finite field. C C Ff is an [E, k, d] linear code
over [ if

(/) C is linear subspace of dimension k
(/1) The minimum weightis > d

Definition.
For c e FE, support of c:

c|| :={i€ E :ci#0}.

The weight of c: size of support.
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Matroids

Definition: Elementary word: ¢ # 0, inclusionwise
minimal support.

Theorem.
Define

C*:={||c||: ceC, elementary}.

Then C* is set of cocircuits of a matroid, M(C).
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Matroids

Theorem.
Define

C* :={||c||: c e C, elementary}.

Then C* is set of cocircuits of a matroid, M(C).

(Co)circuit axioms

C* is set of cocircuits of a matroid if and only if
e D&CH
eC,DeC*and CSDthenC=D

eC,DeC*, C#D, eeCnD, then (CuD)—e contains
a cocircuit
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Usual suspects
Duality/dual code C! := {d: (c,d) =0 VceC}

M(C*) = M(C)*

Deletion/puncturing C\ e: remove coordinate in-
dexed by e from each word

M(C\e) =M(C)\e

Contraction/shortening C/e: restrict to words
having ce = 0, then remove coordinate

M(C/e) =M(C)/e
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Matrices

Definition.

Generator matrix A: rows form basis of C
Parity check matrix H: rows form basis of C+

ceC & Hc' =0

Write M[A] for M(C).
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The main question:

When is M(C1) = M(C3)?
When is M[A1] = M[A>]?

Interpretations:
e Algorithm
e Counting
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Algorithm

Theorem (Kral’ (2007), basically)

If M[A1] has bounded branch width, can test in poly-
nomial time if M[A1] = M[A>].

Conjecture (Geelen, Gerards, Whittle)

There is always a polynomial-time algorithm to test
if M[A1] = M[A>].
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Counting
e Exact, for given matroid: basically previous slide.

e Qualitatively: upper bounds.
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Part Ii
Kahn’s Conjecture
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Easy cases

Theorem.
If C1 and C, binary, then

M(C1) =M(Cy) < (C1=0Cs.

Theorem (Brylawski, Lucas).
If C; and C> ternary, then

M(C1)=M(Cy) & (C; = C/2

where some coordinates of C, were scaled by —1 to
get C’,.
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Operations
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Operations
1 2 3 45 6 7 8
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Operations
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Operations
1
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Operations
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Operations
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Operations
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No bound?

=
N =
=
w
==
N =
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Relief

Theorem (Kahn 1981).
If A1, A> quaternary, M[A1] 3-connected,
M[A1] = M[A>] then A4, A> related through

e Row operations
e Column scaling
e Field automorphism
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Kahn’s Conjecture

Conjecture.
For each F, there is ¢ such that each 3-connected M
has at most ¢ inequivalent representations.
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Hurray!

Theorem (Oxley, Vertigan, Whittle 1995).
For GF(5), each 3-connected M has at most 6
Inequivalent representations.
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Alas.

Theorem (Oxley, Vertigan, Whittle 1995).
For GF(5), each 3-connected M has at most 6
Inequivalent representations.

Theorem (Oxley, Vertigan, Whittle 1995).
Kahn’'s Conjecture is false for all larger fields.
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Stabilizers
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Stabilizers
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Stabilizer

Whittle’s Stabilizer Theorem (1999).
If N is not a stabilizer for a class, it will show after 2
steps.

Corollary 4.
U, 4 stabilizes 3-connected quaternary matroids.

Corollary 5.

U> 5, Us 5 stabilize 3-connected quinary matroids.
U, 4 stabilizes remaining 3-connected quinary ma-
troids.
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Counterexamples: swirls
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Counterexamples: spikes
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New conjecture

Conjecture.
For each [F, there is ¢ such that each 4-connected M
has at most ¢ inequivalent representations.
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Counterexamples: maces



New conjecture

Conjecture.
For each [F, there are ¢, k such that each k-connected

M has at most ¢ inequivalent representations.
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Part 11l
The prime field case
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The result

Theorem (Geelen, Whittle 2011+).

For each GF(p) there is ¢ such that each
4-connected M has at most ¢ inequivalent
representations.

Proof (idea).
Characterize “worst offenders,” bound their size.
Details: about 275 pages.
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Freedom

Definition.

{e, f} is clonal pair if exchanging them is
iIsomorphism.

Definition.
e is fixed if no extension has independent
clonal pair {e, f}.

Corollary.
If e fixed, then representation of M\ e
extends uniquely.
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Freedom
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k-coherence

Definition.

M is k-coherent if 3-connected and has no swirl-like
flower with > k petals.
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Worst offenders
Definition.
A k-skeleton for GF(p) is 3-connected M with

e M is not wheel, whirl of rank > 3
o If e fixed then M\ e not k-coherent
o If e cofixed then M/e not k-coherent
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Chain theorem for skeletons

Theorem (Geelen, Whittle 2011+).
Let M be nonempty k-skeleton. One of these situa-

tions applies:
(i) M\ e or M/e is k-skeleton for some e
(if) M/p\q is k-skeleton for some clonal pair {p, g}

(/i) Special structure stuff that needs > 20ish
elements and 3- or 4-element reductions.

Work in progress (Hall, Mayhew, vZ).
Use this (and a computer) to get explicit bound on
5-coherent, GF(7).
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How to do it in Sage?

def is_clonal_pair(M,e,f):
morphism = {}
for x in M.groundset():
morphism[x] = X
morphism[e] = f
morphism[f] = e
return M.1is_isomorphism(M, morphism)

Size 4
1

567 8 9 1011 12 13
Skeletons 1 2 4 10 28 18 20 16* 28* 777
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Part IV
Arbitrary fields
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New conjecture

Conjecture.

For each finite [F, there are ¢,k such that
each k-connected M has at most ¢ inequivalent
representations.

“Theorem” (Geelen, Gerards, Huynh, vZ).
True!

(Note: proof gives horrible bounds on ¢, k).
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New connectivity

Definition.

M is (f, k)-connected if, for each [-separation (A, B),
[< Kk,

min{|A[, |B|} < f(D.
Lemma.

If M is (f, k)-connected, and f non-decreasing, then
M\e or M/e is (2f, k)-connected.

Lemma.
If M is simple, (f, k)-connected, and critical, then
|E(M)| < 2r(M),
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Chain theorem

“Theorem” (Geelen, Gerards, Huynh, vZ).
Let f grow fast, M huge, (f, k)-connected. Then have
(f, k)-connected M’ with

[E(M)| — |[E(M7)] < 2.

Moreover, can protect a small set X.
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Constraining freedom

‘Theorem’ (Geelen, vZ).

If 7 is tangle of M (representable over GF(q)),
then the nonfixed elements are in a 7-small set
of bounded order.

Observation.
(f, k)-connectivity gives natural tangle!
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Slides at
http://www.math.princeton.edu/~svanzwam/

The End
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