Beyond Total Unimodularity

Stefan van Zwam

Department of Mathematics
Princeton University

Based on joint work with Rhiannon Hall, Dillon Mayhew, Rudi Pendavingh, and Geoff Whittle

Combinatorics Seminar, Binghamton University, NY March 11, 2013

The plan:

- Matroid Representations, Whittle's Classes
- Basis Counting
- Decomposition
- Excluded Minors

Part I Matroid Representations, Whittle's Classes

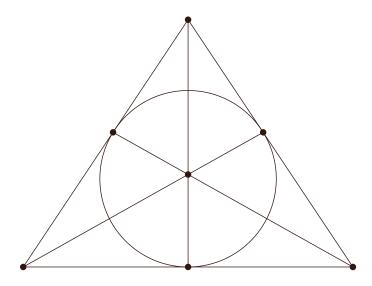
Representations

Definition.

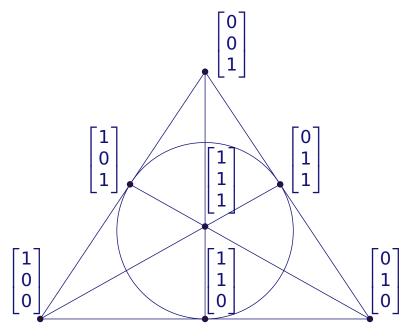
A representation of M over field \mathbb{F} is a dependency-preserving map

$$A: E(M) \to \mathbb{F}^r$$
.

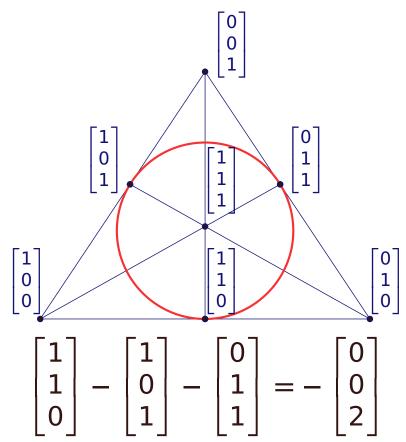
Example: the Fano matroid



Example: the Fano matroid



Example: the Fano matroid



Representations

Definition.

A representation of M over field \mathbb{F} is a dependency-preserving map

$$A: E(M) \to \mathbb{F}^r$$
.

- View A as matrix with columns labeled by E
- Write M = M[A]

Regular matroids

Theorem (Tutte 1958).

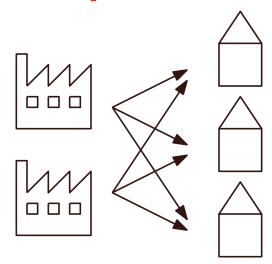
Equivalent for a matroid *M*:

- M representable over all fields
- M representable over GF(2) and GF(3)
- ullet M has totally unimodular representation over ${\mathbb R}$

A matrix is totally unimodular if every subdeterminant is in

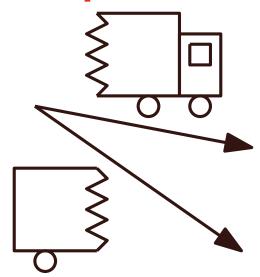
$$\{\pm 1\} \cup \{0\}.$$

Such matroids are called regular.



minimize
$$2x_{11} + 3x_{12} + 4x_{13} + 2x_{21} + 2x_{22} + 8x_{23}$$

such that
$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_{11} \\ x_{12} \\ x_{13} \\ x_{21} \\ x_{22} \\ x_{23} \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 2 \\ 5 \\ 3 \end{bmatrix}$$



Theorem.

If constraint matrix totally unimodular, then integer optimal solution.

Theorem (Whittle 1997).

Equivalent for a matroid *M*:

- M representable over all fields with characteristic ≠ 2
- M representable over GF(3) and GF(5)
- M has totally dyadic representation over R

A matrix is *totally dyadic* if every subdeterminant is in

$$\{\pm 2^k : k \in \mathbb{Z}\} \cup \{0\}.$$

Theorem (Whittle 1997).

Equivalent for a matroid *M*:

- M representable over all fields except, perhaps, GF(2)
- M representable over GF(3), GF(4), GF(5)
- M representable over GF(3), GF(8)
- M has near-regular representation over $\mathbb{Q}(\alpha)$

A matrix is *near-regular* if every subdeterminant is in

$$\{\pm \alpha^k (1-\alpha)^l : k, l \in \mathbb{Z}\} \cup \{0\}.$$

Theorem (Vertigan, unpublished; Pendavingh, vZ 2010).

Equivalent for a matroid *M*:

- M representable over GF(4), GF(5)
- M has totally golden ratio representation over ℝ

A matrix is totally golden ratio if every subdeterminant is in

$$\{\pm \tau^k : k \in \mathbb{Z}\} \cup \{0\}$$

where τ is the golden ratio, i.e. $\tau^2 - \tau - 1 = 0$.

Part II Basis counting

Kirchhoff's Matrix-Tree Theorem

Theorem (Kirchhoff)

Let A be T.U. matrix. Then

$$det(AA^T) = \#\{B \text{ basis of } M[A]\}$$

Theorem (Cauchy - Binet)

Let A be $r \times s$ matrix; $B \times s \times r$ matrix. Then

$$\det(AB) = \sum_{|X|=r} \det(A_X) \det(B_X)$$

Complex unimodular: matrix over ℂ, nonzero determinants have norm 1.

$$det(AA^{\dagger}) = \#\{B \text{ basis of } M[A]\}$$

Quaternionic unimodular?

Problem: determinants only make sense in commutative rings

What Would Tutte Do?

Chain groups

Definition: R ring, E finite set. Chain group is

$$C \subseteq R^E$$

such that, for $c, d \in C$ and $r \in R$

- <u>0</u> ∈ *C*
- $c + d \in C$
- rc ∈ C

Definition: Support of a chain c:

$$||c|| := \{e \in E : c_e \neq 0\}$$

Definition: Elementary chain: $c \neq \underline{0}$, inclusionwise minimal support.

Chain groups

Definition: Skew partial field $\mathbb{P} = (R, G)$

- R ring
- $G \subseteq R^*$ group
- \bullet $-1 \in G$

Definition: G-primitive chain: $c \in (G \cup \{0\})^E$.

Definition: Chain group is \mathbb{P} -chain group if, for all $c \in C$ elementary,

$$c = rd$$

where $r \in R$ and $d \in C$ is G-primitive.

Example:

- Regular partial field: $\mathbb{U}_0 = (R, G)$ with
 - $ightharpoonup R = \mathbb{Z}$
 - $ightharpoonup G = \{-1, 1\}$
- \mathbb{Z} -span of rows of T.U. matrix is \mathbb{U}_0 -chain group

Chain groups

Theorem (Pendavingh, vZ 2009):

For a \mathbb{P} -chain group C, define

$$C^* := \{ \|c\| : c \in C, elementary \}$$

Then \mathcal{C}^* is set of cocircuits of a matroid, $M(\mathcal{C})$.

(Co)circuit axioms

 \mathcal{C}^* is set of cocircuits of a matroid if and only if

- Ø ∉ C*
- $C, D \in C^*$ and $C \subseteq D$ then C = D
- $C, D \in \mathcal{C}^*$, $C \neq D$, $e \in C \cap D$, then $(C \cup D) e$ contains a cocircuit

Why all this trouble?

- Because we can
- Can represent some matroids that have no representation over any (skew) field
- Captures "multilinear representations" from coding theory
- Quaternionic Unimodular Matroids:
 - $ightharpoonup R = \mathbb{H}$, the quaternions
 - $ightharpoonup G = \{x \in \mathbb{H} : ||x|| = 1\}$

Cauchy-binet extended

Theorem (Pendavingh, vZ 2011+)

Let A be $r \times s$ matrix over \mathbb{H} . Then

$$\delta(AA^{\dagger}) = \sum_{|X|=r} \delta(A_X)\delta(A_X^{\dagger})$$

where

$$\delta(D) := \sqrt{|\det(z_2(\varphi(D)))|}$$

Basis counting, extended

$$\delta(AA^{\dagger}) = \#\{B \text{ basis of } M[A]\}$$

$$P_A := A^{\dagger} (AA^{\dagger})^{-1} A$$

$$\delta(P_A[F,F]) = \frac{\#\{B \text{ basis, } F \subseteq B\}}{\#\{B \text{ basis}\}}$$

Some open problems

Let \mathbb{P} be skew partial field.

- Are P-representable matroids algebraic?
- Does Ingleton's Inequality hold?
- Are there Q.U. matroids not representable over a commutative field?
- Can we get all Q.U. matroids with just a finite subgroup of $\{x \in \mathbb{H} : ||x|| = 1\}$?
- Do Q.U. matroids have the half-plane property?

Part III Structure

Elementary operations that preserve T.U.:

- Scale rows and columns by −1
- Permute rows and columns
- Row-reduce a column to an identity vector

$$\begin{bmatrix} \alpha & c \\ b & D \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \alpha^{-1}c \\ 0 & D - b\alpha^{-1}c \end{bmatrix}$$

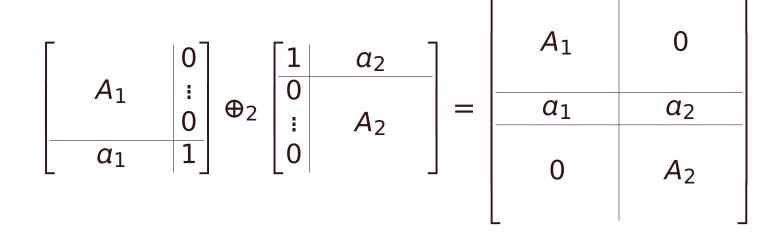
Dualizing:

$$[I A] \to [-A^T I']$$

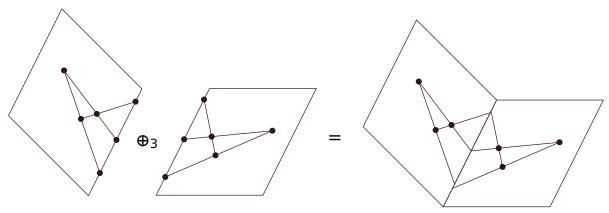
Operations that preserve T.U.: 1-sums

$$A_1 \oplus_1 A_2 = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$$

Operations that preserve T.U.: 2-sums

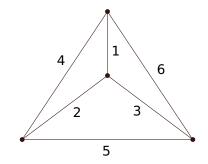


3-sums



Have cement, need bricks

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ -1 & -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 1 & -1 \end{bmatrix}$$



Theorem.

A graphic matroid is regular.

The case R_{10}

$$\begin{bmatrix} -1 & 1 & 0 & 0 & 1 \\ 1 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 \\ 1 & 0 & 0 & 1 & -1 \end{bmatrix}$$

Theorem. If M regular, contains R_{10} , not equal to R_{10} , it can be written as a 1- or 2-sum.

Seymour's Decomposition Theorem

Theorem (Seymour 1980).

Every regular matroid can be obtained from graphic ones and R_{10} by dualizing, k-sums for k = 1, 2, 3.

Theorem (Tutte 1960 + Seymour 1981).

A matroid can be tested for being graphic in polynomial time.

Theorem (Truemper 1982).

A matroid can be tested for being regular in polynomial time.

...and beyond?

Problem.

Can a matroid be tested for being *near-regular* in polynomial time?

Problem.

Is there a satisfying decomposition theorem for nearregular matroids?

Recognizing signed-graphic matroids Definition.

A matroid is signed-graphic \Leftrightarrow representation over GF(3) with at most 2 nonzero entries per column.

Theorem (Geelen; Mayhew – unpublished).

There is no polynomial-time algorithm to test if a matroid, given by rank oracle, is signed-graphic.

But...

What if M is given as GF(3)-matrix?

What about decomposition?

Natural condition for decomposition:

 No basic class contains all graphic and all cographic matroids.

Corollary (Mayhew, Whittle, vZ 2011).

Any natural decomposition of the near-regular maturoids must employ 4-sums.

What about decomposition?

Theorem (Mayhew, Whittle, vZ 2011).

 M_1, M_2 graphic matroids. Can build internally 4-connected near-regular matroid having both M_1 and dual of M_2 in it.

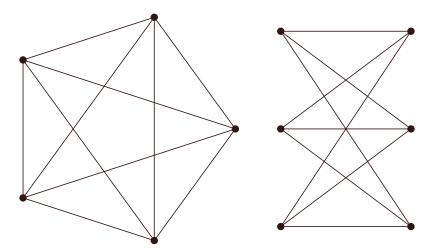
$$A_{12} = \begin{bmatrix} c & c & d & e & f & 4 & 5 & 6 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 & \alpha & 0 \\ 1 & 1 & 0 & 0 & \alpha & -\alpha & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \end{bmatrix}$$

Part IV Excluded minors

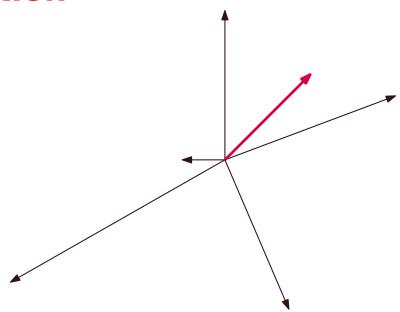
Kuratowski's Theorem

Theorem.

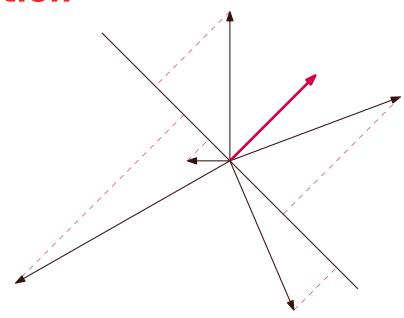
Exactly two excluded minors for planar graphs:



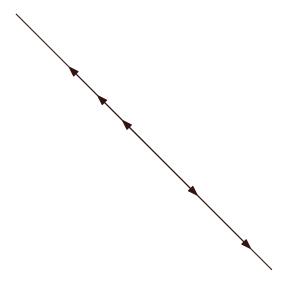
Contraction



Contraction



Contraction



Rota's Conjecture

Theorem (Tutte 1958):

Exactly 1 excluded minor for

$$\left\{M: E(M) \to \bigcirc \right\}$$

namely

Rota's Conjecture

Conjecture (Rota 1971): \mathbb{F} finite, then $\exists k = k(\mathbb{F})$: exactly k excluded minors for

$$\left\{M:E(M)\to\right\}$$

^aMayhew, Royle 2009

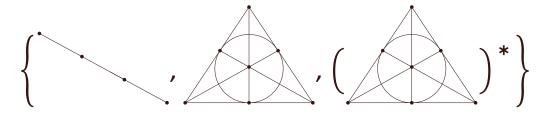
Regular matroids

Theorem (Tutte 1958):

Exactly 3 excluded minors for

$$\left\{M: E(M) \to \begin{array}{c}
GF(2) \\
GF(3) \\
GF(4) \\
GF(5) \\
GF(7)
\end{array}\right\}$$

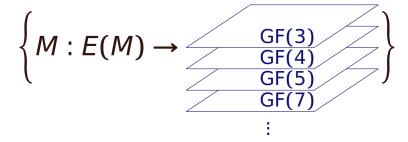
namely



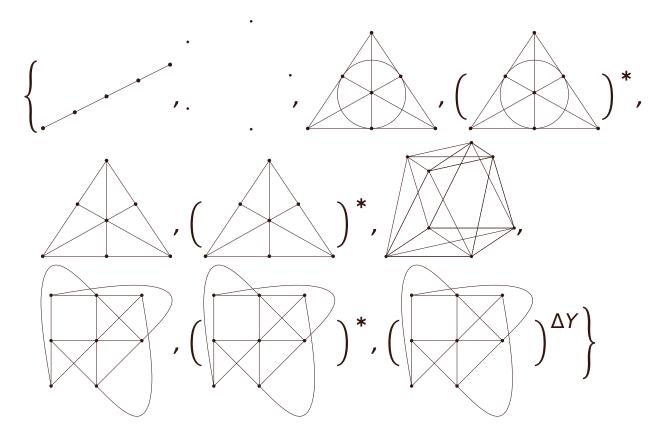
Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):

Exactly 10 excluded minors for



namely



Others?

Sixth-roots-of-unity known.

Major open case: Dyadic matroids.

Slides, papers at http://www.math.princeton.edu/~svanzwam/

The End