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The plan:
e Matroid Representations, Whittle’s Classes

e Basis Counting
e Decomposition
e Excluded Minors
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Part |

Matroid Representations, Whittle’s
Classes

e R
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Representations

Definition.

A representation of M over field F is a dependency-
preserving map

A:E(M)— .
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Example: the Fano matroid
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Example: the Fano matroid
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Example: the Fano matroid
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Representations

Definition.

A representation of M over field [F is a dependency-
preserving map

A:E(M)—F,

e View A as matrix with columns labeled by E
o Write M = M[A]
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Regular matroids

Theorem (Tutte 1958).
Equivalent for a matroid M:

e M representable over all fields
e M representable over GF(2) and GF(3)
e M has totally unimodular representation over R

A matrix is totally unimodular if every sub-
determinant is in

{£1}u{0}.

Such matroids are called regular.

Stefan van Zwam Beyond Total Unimodularity



An optimization problem
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An optimization problem

minimize 2x11 4+ 3X12 + 4x13 4+ 2X21 + 2X2> + 8X>23

111000] |*1 4
000111 ;12 6
suchthat [1 00100 X13 = |2
010010 21 5
001001]| [X22 3
_ i _X23_ e
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An optimization problem

.
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An optimization problem
Theorem.

If constraint matrix totally unimodular, then
integer optimal solution.
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.. . and beyond

Theorem (Whittle 1997).
Equivalent for a matroid M:

e M representable over all fields with characteristic

#* 2
e M representable over GF(3) and GF(5)
e M has totally dyadic representation over R

A matrix is totally dyadic if every subdeterminant is
in

{£2K: ke z}u {0}.
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... and beyond

Theorem (Whittle 1997).
Equivalent for a matroid M:

e M representable over all fields except, perhaps,
GF(2)

e M representable over GF(3), GF(4), GF(5)
e M representable over GF(3), GF(8)
e M has near-reqular representation over Q(a)

A matrix is near-regular if every subdeterminant is
N

{xak(1-a)':k,leZ}u{0}.
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... and beyond

Theorem (Vertigan, unpublished; Pendavingh,
vZ 2010).

Equivalent for a matroid M:
e M representable over GF(4), GF(5)
e M has totally golden ratio representation over R

A matrix is totally golden ratio if every sub-
determinant is in

{+78: ke z}u {0}

where T is the golden ratio, i.e. T2—T7-1=0.
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Part II
Basis counting
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Kirchhoff’s Matrix-Tree Theorem

Theorem (Kirchhoff)
Let A be T.U. matrix. Then

det(AAT) = #{B basis of M[A]}

Theorem (Cauchy - Binet)
Let A be r x s matrix; B s x r matrix. Then

det(AB) = ) det(Ax)det(Bx)
| X|=r
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...and beyond

e Complex unimodular: matrix over C, nonzero de-
terminants have norm 1.

det(AAT) = #{B basis of M[A]}

e Quaternionic unimodular?

Problem: determinants only make sense in
commutative rings
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What Would Tutte Do?
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Chain groups
Definition: R ring, E finite set. Chain group is

C CRFE
such that, forc,de C and r € R
e0eC
ec+deC
erceC

Definition: Support of a chain c:
Icl|:={e€E:ce#0}

Definition: Elementary chain: ¢ # 0, inclusionwise
minimal support.
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Chain groups
Definition: Skew partial field P = (R, G)
e R ring
e G CR* group
e—1€eG
Definition: G-primitive chain: c € (GuU {0})Ef.

Definition: Chain group is P-chain group if, for all
c € C elementary,

c=rd

where r e R and d € C is G-primitive.
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Example:
e Regular partial field: Ug = (R, G) with
»R=7
»G={-11}
e Z-span of rows of T.U. matrix is Ug-chain group
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Chain groups
Theorem (Pendavingh, vZ 2009):
For a P-chain group C, define

C* :=A{|lc|l: c e C, elementary}

Then C* is set of cocircuits of a matroid, M(C).

(Co)circuit axioms
C* is set of cocircuits of a matroid if and only if

cDEC*
eC,DeC*and CCDthenC=D

oC,DeC*, C#D, eeeCnD, then (CuD)—e contains
a cocircuit
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Why all this trouble?

e Because we can

e Can represent some matroids that have no repre-
sentation over any (skew) field

e Captures “multilinear representations” from cod-
ing theory

e Quaternionic Unimodular Matroids:

» R = H, the quaternions
>»G={xeH:|x||=1}
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Cauchy-binet extended

Theorem (Pendavingh, vZ 2011+)
Let A be r x s matrix over H. Then

5(AAT) = > 6(Ax)8(A1)
| X|=r

where

5(D) := /| det(z2(p(D)))|

Stefan van Zwam Beyond Total Unimodularity



27/53

Basis counting, extended

5(AAT) = #{B basis of M[A]}

Py :=AT(AAT) 1A

#{B basis, FC B}

oPalF F1) = # {B basis}
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Some open problems
Let P be skew partial field.

e Are P-representable matroids algebraic?
e Does Ingleton’s Inequality hold?

e Are there Q.U. matroids not representable over a
commutative field?

e Can we get all Q.U. matroids with just a finite sub-
group of {xeH:|x||=1}7?

e Do Q.U. matroids have the half-plane property?
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Part Il
Structure

A A A A A ST R

- 77 =
’dl .l’_l"g-{'!.ﬂ —a
i =
- .
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Operations
Elementary operations that preserve T.U.:

e Scale rows and columns by —1
e Permute rows and columns
e Row-reduce a column to an identity vector
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Operations
Dualizing:

[IA] - [-ATI']
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Operations
Operations that preserve T.U.: 1-sums
A1 O
A Ao =
101A2 [O Az}

Stefan van Zwam Beyond Total Unimodularity



33/53

Operations
Operations that preserve T.U.: 2-sums
I 0 1 a | Al 0
A 0
1 0 D> : AZ - ai ap
| a1 1 0 ] 0 As
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SO
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Have cement, need bricks

1 2 3 4 5 6
-1-1-1 0 0 O
1 0 0 -1 0 1
0O 1 0 1 -120
O 0 1 0 1 -1

Theorem.
A graphic matroid is regular.
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The case Rjg

-11 0 0 1
1 -1 1 0 O
O 1 -1 1 O
O 0 1 -1 1
1 0 0 1 -1

Theorem. If M reqular, contains R1g, not equal to
R10, it can be written as a 1- or 2-sum.
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Seymour’s Decomposition Theorem

Theorem (Seymour 1980).
Every regular matroid can be obtained from graphic
ones and Rig by dualizing, k-sums for k =1, 2, 3.

Theorem (Tutte 1960 + Seymour 1981).
A matroid can be tested for being graphic in polyno-
mial time.

Theorem (Truemper 1982).
A matroid can be tested for being regular in polyno-
mial time.
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... and beyond?

Problem.
Can a matroid be tested for being near-regular in
polynomial time?

Problem.
Is there a satisfying decomposition theorem for near-
regular matroids?
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Recognizing sighed-graphic matroids
Definition.

A matroid is signed-graphic <

representation over GF(3) with at most 2 nonzero
entries per column.

Theorem (Geelen; Mayhew - unpublished).
There is no polynomial-time algorithm to test if a
matroid, given by rank oracle, is signed-graphic.

But...
What if M is given as GF(3)-matrix?
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What about decomposition?
Natural condition for decomposition:

e No basic class contains all graphic and all co-
graphic matroids.

Corollary (Mayhew, Whittle, vZ 2011).
Any natural decomposition of the near-regular ma-
troids must employ 4-sums.
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What about decomposition?

Theorem (Mayhew, Whittle, vZ 2011).

M1, M, graphic matroids. Can build internally 4-
connected near-regular matroid having both M; and
dual of M> in it.

d e f 45 6
all 0 111 O
b| 0-1110 o
A_cllOOor—a
1273710 0 010 1
210 0 001 -1
310 0 011 O
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Part IV
Excluded min
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Kuratowski’s Theorem

Theorem.
Exactly two excluded minors for planar graphs:
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Contraction
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Contraction
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Contraction
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Rota’s Conjecture

Theorem (Tutte 1958):
Exactly 1 excluded minor for

{M : E(M) — GF(2) }

namely

.
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Rota’s Conjecture

Conjecture (Rota 1971): [ finite, then Ik = k(F) :
exactly k excluded minors for

{M . E(M) — . }

F GF(2) GF(3) GF(4) GF(5)
kK 1 4 7 >564°
9Mayhew, Royle 2009
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Regular matroids

Theorem (Tutte 1958):
Exactly 3 excluded minors for

GF(2)
. GF(3)
{M . E(M) — ) }
GF(5)
GF(7)

namely

(D]
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Near-regular matroids

Theorem (Hall, Mayhew, vZ 2009):
Exactly 10 excluded minors for

. GF(3)
GF(5)
GF(7)
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Others?
Sixth-roots-of-unity known.

Major open case: Dyadic matroids.
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[

Slides, papers at
http://www.math.princeton.edu/~svanzwam/

The End
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