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Part I
Structure of minor-closed classes
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Graph Minors Structure Theorem
Theorem (Robertson and Seymour 2003).
Let G be proper minor-closed class of graphs. Each
G ∈ G admits a tree-decomposition, whose parts are
almost embeddable in a surface.
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Graph Minors Structure Theorem
Theorem (Robertson and Seymour 2003).
Let G be proper minor-closed class of graphs. Each
G ∈ G admits a tree-decomposition, whose parts are
almost embeddable in a surface.

Consequences:

• No infinite antichains of graphs;

• G has finite set of excluded minors;

• Algorithms.
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Matroid minors: the blueprint
Theorem (Seymour 1980).
Let M be a regular matroid. Then M can be con-
structed from graphic matroids, cographic matroids,
and R10 through 1-, 2-, 3-sums.
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Matroid minors: the blueprint
Theorem (Seymour 1980).
Let M be a regular matroid. Then M can be con-
structed from graphic matroids, cographic matroids,
and R10 through 1-, 2-, 3-sums.

Highly connected regular matroids are:

• Graphic matroids

• Cographic matroids

What can happen for other classes?
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Matroid Minors Structure Theorem
Hypothesis (Geelen, Gerards, Whittle).
Let M be proper minor-closed class of matroids rep-
resentable over GF(q). Each M ∈M admits a tree-
decomposition, whose parts are

• almost frame matroids; or

• duals of almost frame matroids; or

• almost representable over a subfield of GF(q).
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Constructions
Even-cycle matroids

≤ 2 ones per column

* * *· · ·
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Constructions
Grafts

≤ 2 ones per column

∗

∗

...
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Constructions
Grafts

≤ 2 ones per column

∗

∗

...

Close under minors: duals of even-cut matroids
(Guenin, Pivotto, Wollan).



8/24

Stefan van Zwam When Matroids are Highly Connected

Constructions
Almost representable over a subfield
A matroid is GF(q)-regular if it is representable over
GF(qt) for all t ≥ 2.
Theorem (Nelson, vZ 2015)
If M is highly connected and has a large PG(t, q)
minor, then equivalent:

• M is GF(q)-regular;

• M is representable
over GF(q2) and GF(qt)
for some t ≥ 3;

• M is a restriction of
dPG(r − 1, q) or PG(r − 1, q).
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Perturbations
Definition.
A rank-(≤ t) perturbation of M = M[A] is the matroid
M[A + P], where P has matrix rank ≤ t.
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Perturbations
Definition.
A rank-(≤ t) perturbation of M = M[A] is the matroid
M[A + P], where P has matrix rank ≤ t.

A

−V

W

C
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Matroid Minors Structure Theorem
Hypothesis (Geelen, Gerards, Whittle 2015).
Let M be proper minor-closed class of matroids rep-
resentable over GF(q). There exist k, t,  such that
each vertically k-connected M ∈M of size ≥  is

• rank-(≤ t) perturbation of frame matroid; or

• dual of rank-(≤ t) perturbation of frame matroid;
or

• rank-(≤ t) perturbation of matroid representable
over a subfield.
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Templates
Frame template, binary version:

X

Z Y1 Y0 C

unit

columns

columns from Λ

rows

from Δ

0 A1

≤ 2 ones

per column
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Templates
Frame template, binary version:

X

Z Y1 Y0 C

unit

columns

columns from Λ

rows

from Δ

0 A1

≤ 2 ones

per column

Definition.
M() is set of matroids built from template .
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Templates
Frame template, binary version:

X

Z Y1 Y0 C

unit

columns

columns from Λ

rows

from Δ

0 A1

≤ 2 ones

per column

Definition.
M() is set of matroids built from template .

Perturbation Hypothesis (implicit in GGW ’15)
Every perturbation can be built from a template.
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Other hypotheses
Let M be a minor-closed class of GF(q)-
representable matroids.
Template List Hypothesis (GGW ’15)
If M() ⊆ M, and highly connected matroids con-
form or coconform to , then  is equivalent to one
of finitely many templates.
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Other hypotheses
Let M be a minor-closed class of GF(q)-
representable matroids.
Template List Hypothesis (GGW ’15)
If M() ⊆ M, and highly connected matroids con-
form or coconform to , then  is equivalent to one
of finitely many templates.
Template Covering Hypothesis (GGW ’15)
All vertically k-connected matroids conform or co-
conform to a template from this list.
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Other hypotheses
Let M be a minor-closed class of GF(q)-
representable matroids.
Template List Hypothesis (GGW ’15)
If M() ⊆ M, and highly connected matroids con-
form or coconform to , then  is equivalent to one
of finitely many templates.
Template Covering Hypothesis (GGW ’15)
All vertically k-connected matroids conform or co-
conform to a template from this list.
Growth Rate Hypothesis (Grace, vZ; based on
GGW ’15 and Geelen and Nelson 2015)
The extremal function (growth rate function) of M is
attained infinitely often by a matroid conforming to
a template.
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Part II
Applications



14/24

Stefan van Zwam When Matroids are Highly Connected

Creating an order on templates
Theorem (Grace, vZ 2017).
For every binary frame template , one of the fol-
lowing holds:

•  is trivial;

•  reduces to C, D, CD, Y0, or Y1;

• For some k,  no simple, vertically k-connected
matroid of size ≥  conforms or coconforms to .

X

Z Y1 Y0 C

unit

columns

columns from Λ

rows

from Δ

0 A1

≤ 2 ones

per column
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Creating an order on templates

≤ 2nonzeroes per col



≤ 2nonzeroes per col ≤ 2nonzeroes per col



y y

1

≤ 2nonzeroes per col0 : D :

C/Y0 CD

Y1

≤ 2nonzeroes per col    0

1

0

· · · 1
1 1

1

1

1

1

1

1

1

10

0 0 0

0· · ·
· · ·
· · ·

· · ·
· · ·
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Applications: 1-flowing matroids
Conjecture (Seymour 1981).
The excluded minors for 1-flowing matroids are U2,4,
AG(3,2), T11, T∗11.
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Applications: 1-flowing matroids
Conjecture (Seymour 1981).
The excluded minors for 1-flowing matroids are U2,4,
AG(3,2), T11, T∗11.

Theorem (Grace, vZ 2017).
The template list for 1-flowing matroids is {0}.
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Applications: 1-flowing matroids
Conjecture (Seymour 1981).
The excluded minors for 1-flowing matroids are U2,4,
AG(3,2), T11, T∗11.

Theorem (Grace, vZ 2017).
The template list for 1-flowing matroids is {0}.

Corollary (Grace, vZ 2017).
Subject to Template Covering Hypothesis, a coun-
terexample to Seymour’s 1-Flowing Conjecture has
low-order separation or small size.
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Applications: fewer excluded minors
Theorem (Wagner).
A 3-connected graph on ≥ 11 edges is planar if and
only if it has no K3,3-minor.
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Applications: fewer excluded minors
Theorem (Wagner).
A 3-connected graph on ≥ 11 edges is planar if and
only if it has no K3,3-minor.
Theorem (Grace, vZ 2017+).
Subject to Template Covering Hypothesis, a highly
connected binary matroid is in
EX(PG(3,2)\e,M∗(K6), L11) if and only if it is even-
cycle.
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Applications: fewer excluded minors
Theorem (Wagner).
A 3-connected graph on ≥ 11 edges is planar if and
only if it has no K3,3-minor.
Theorem (Grace, vZ 2017+).
Subject to Template Covering Hypothesis, a highly
connected binary matroid is in
EX(PG(3,2)\e,M∗(K6), L11) if and only if it is even-
cycle.

Similar results for:

• Even-cycle with blocking pair

• Even-cut

• Ternary signed-graphic (work in progress)

• Dyadic (work in progress)
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Applications: growth rates
Definition.
Extremal function hM(r) is maximum number of el-
ements in simple, rank-r matroid in M.
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Applications: growth rates
Definition.
Extremal function hM(r) is maximum number of el-
ements in simple, rank-r matroid in M.
Theorem (Grace, vZ 2017).
Subject to Growth Rate Hypothesis:

hEX(PG(3,2)) ≈ r2 − r + 1.
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Applications: growth rates
Definition.
Extremal function hM(r) is maximum number of el-
ements in simple, rank-r matroid in M.
Theorem (Grace, vZ 2017).
Subject to Growth Rate Hypothesis:

hEX(PG(3,2)) ≈ r2 − r + 1.

Theorem (Grace, work in progress).
Let G be class of Golden Ratio matroids. Subject to
Growth Rate Hypothesis:

hG ≈
�

r + 3

2

�

− 5,

verifying a conjecture by Archer (2005) for suffi-
ciently high ranks.
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Applications: 2-regular matroids
Theorem (Grace, work in progress).
Let M be highly connected, representable over
GF(4) and fields of all characteristics. Then:

• M is representable over all fields with ≥ 4 ele-
ments (2-regular); or

• M is representable over GF(4) and GF(q) for q ≥
7; or

• M is Golden Ratio
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Applications: 2-regular matroids
Theorem (Grace, work in progress).
Let M be highly connected, representable over
GF(4) and fields of all characteristics. Then:

• M is representable over all fields with ≥ 4 ele-
ments (2-regular); or

• M is representable over GF(4) and GF(q) for q ≥
7; or

• M is Golden Ratio

Note: without connectivity assumption, infinitely
many classes (Whittle 2005).
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Applications: approach
Verify Template List Hypothesis for a class M: ex-
plicitly find all templates  such that M() ⊆M. To
rule out a potential template:

• Show M() ⊆M(′) with ′ in list; or

• Show the matroids conforming to the template
are not highly connected; or

• Find certificate placing it outside M.

É Typically, try to build an excluded minor for M
using .
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Applications: approach
Verify Template List Hypothesis for a class M: ex-
plicitly find all templates  such that M() ⊆M. To
rule out a potential template:

• Show M() ⊆M(′) with ′ in list; or

• Show the matroids conforming to the template
are not highly connected; or

• Find certificate placing it outside M.

É Typically, try to build an excluded minor for M
using .

Note: This procedure yields theorems, indepen-
dent of hypotheses!
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Part III
A Speed Bump
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Trouble in template paradise?
Theorem? (Geelen, Gerards, Whittle 2015).
Let M be proper minor-closed class of matroids rep-
resentable over GF(q). There exist k, t,  such that
each vertically k-connected M ∈M of size ≥  is

• rank-(≤ t) perturbation of frame matroid; or

• dual of rank-(≤ t) perturbation of frame matroid;
or

• rank-(≤ t) perturbation of matroid represented
over a subfield.
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The counterexample
Let D be class of dyadic matroids (i.e. representable
over GF(3) and GF(5)).
‘Theorem’ (Grace, vZ 2017+).
For each k, t,  there exists a vertically k-connected
dyadic matroid M on ≥  elements, such that NO
rank-(≤ t) perturbation is a represented frame ma-
troid or the dual of a represented frame matroid.
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The counterexample
Let D be class of dyadic matroids (i.e. representable
over GF(3) and GF(5)).
‘Theorem’ (Grace, vZ 2017+).
For each k, t,  there exists a vertically k-connected
dyadic matroid M on ≥  elements, such that NO
rank-(≤ t) perturbation is a represented frame ma-
troid or the dual of a represented frame matroid.
Consolation:
• Vertical k-connectivity and cographic don’t mix;

• Most results saved by going to cyclic k-
connectivity when “almost dual of frame”;

• Everything should hold when the word “vertically”
is struck out.
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Slides, articles at
http://www.math.lsu.edu/~svanzwam/

The End

http://www.math.lsu.edu/~svanzwam/

