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Part I
Structure of minor-closed classes
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Graph Minors Structure Theorem
Theorem (Robertson and Seymour 2003).
Let G be proper minor-closed class of graphs. Each
G ∈ G admits a tree-decomposition, whose parts are
almost embeddable in a surface.

Consequences:

• No infinite antichains of graphs;

• G has finite set of excluded minors;

• Algorithms.
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Matroid minors: the blueprint
Theorem (Seymour 1980).
Let M be a regular matroid. Then M can be con-
structed from graphic matroids, cographic matroids,
and R10 through 1-, 2-, 3-sums.

Highly connected regular matroids are:

• Graphic matroids

• Cographic matroids

What can happen for other classes?
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Matroid Minors Structure Theorem
Hypothesis (Geelen, Gerards, Whittle; rough
idea).
M proper minor-closed class of F-representable ma-
troids. If M ∈M has sufficiently high branch-width,
then M has a tree-decomposition, the parts of which
are mild modifications of

• representable over a subfield of F; or

• frame matroids; or

• duals of frame matroids.

Need: lots of definitions, 15 years of hard work by
GGW.
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Constructions
Frame matroids

≤ 2 ones per column
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Constructions
Even-cycle matroids (binary)

≤ 2 ones per column

* * *· · ·



8/27

Stefan van Zwam Working with Templates

Constructions
Grafts (binary)

≤ 2 ones per column

∗

∗

...

Close under minors: duals of even-cut matroids
(Guenin, Pivotto, Wollan).
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Constructions
Almost representable over a subfield
A matroid is GF(q)-regular if it is representable over
GF(qt) for all t ≥ 2.
Theorem (Nelson, vZ 2015)
If M is highly connected and has a large PG(t, q)
minor, then equivalent:

• M is GF(q)-regular;

• M is representable
over GF(q2) and GF(qt)
for some t ≥ 3;

• M is a restriction of
dPG(r − 1, q) or PG(r − 1, q).
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Perturbations
Definition.
A rank-(≤ t) perturbation of M = M[A] is the matroid
M[A + P], where P has matrix rank ≤ t.

A

−V

W

C

Matroid view: ≤ t lifts and projections.
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Matroid Minors Structure Theorem
Hypothesis (Geelen, Gerards, Whittle 2015).
Let M be proper minor-closed class of matroids rep-
resentable over GF(q). There exist k, t,  such that
each vertically k-connected M ∈M of size ≥  is

• rank-(≤ t) perturbation of frame matroid; or

• dual of rank-(≤ t) perturbation of frame matroid;
or

• rank-(≤ t) perturbation of matroid representable
over a subfield.
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Application:
Linear Error-correcting Codes
• Binary linear code C is k-dimensional subspace of
GF(2)n.

• Notation: [n, k, d] linear code.
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Asymptotically good codes
• Family C1, C2, . . . of linear codes with parameters
[n, k, d] is asymptotically good if, for some
ϵ > 0:

(i) Growing size: n→∞ as →∞
(ii) Constant rate: k/n ≥ ϵ
(iii) Growing minimum distance: d/n ≥ ϵ

Theorem. Asymptotically good codes exist.
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Asymptotically good codes: structure?
Operations on a code:

• Puncturing: C\ , remove th coordinate from
each word

• Shortening: C/, take {c ∈ C : c = 0}, then
remove th coordinate.

Theorem (Nelson, vZ 2015). Let M be a class of
binary linear codes closed under puncturing, short-
ening. Assuming Hypothesis, if M contains an
asymptotically good sequence, then M contains all
codes.
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Part II
A Speed Bump
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Trouble
Theorem? (Geelen, Gerards, Whittle 2015).
Let M be proper minor-closed class of matroids rep-
resentable over GF(q). There exist k, t,  such that
each vertically k-connected M ∈M of size ≥  is

• rank-(≤ t) perturbation of frame matroid; or

• dual of rank-(≤ t) perturbation of frame matroid;
or

• rank-(≤ t) perturbation of matroid represented
over a subfield.
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A counterexample
Let D be class of dyadic matroids (i.e. representable
over GF(3) and GF(5)).
Theorem (Grace, vZ 2017+).
For each k, t,  there exists a vertically k-connected
dyadic matroid M on ≥  elements, such that NO
rank-(≤ t) perturbation is a represented frame ma-
troid or the dual of a represented frame matroid.
Consolation:
• Vertical k-connectivity and cographic don’t mix;

• Most results saved by going to cyclic k-
connectivity when “almost dual of frame”;

• Everything should hold when the word “vertically”
is struck out.



18/27

Stefan van Zwam Working with Templates

Matroid Minors Structure Theorem
Hypothesis (Geelen, Gerards, Whittle 2015).
Let M be proper minor-closed class of matroids rep-
resentable over GF(q). There exist k, t,  such that
each k-connected M ∈M of size ≥  is

• rank-(≤ t) perturbation of frame matroid; or

• dual of rank-(≤ t) perturbation of frame matroid;
or

• rank-(≤ t) perturbation of matroid representable
over a subfield.
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Part III
More detail: templates
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Frame templates
Definition.
 = (, C, X, Y0, Y1, A1,Δ,Λ).

X

Z Y1 Y0 C

unit

columns

columns from Λ

rows

from Δ

0 A1

≤ 2 ones

per column

Definition.
M() is set of matroids conforming to template .
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Frame Template Hypothesis
Hypothesis (Geelen, Gerards, Whittle 2015)
M minor-closed class of GF(q)-representable ma-
troids, m integer. ∃k,1, . . . ,s,Ψ1, . . . ,Ψt s.t.

• ∀ :M() ⊆M;

• ∀j :M∗(Ψj) ⊆M;

• If M ∈M is simple, k-connected, ≥ 2k elements,
no PG(m,p)-minor, then

É M ∈M(1) ∪ · · · ∪M(s) or
É M∗ ∈M(Ψ1) ∪ · · · ∪M(Ψs).

Refine connectivity:

• Vertically k-connected: M has large M(Kn) minor;

• Cyclically k-connected: M has large M∗(Kn)minor.
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Creating an order on templates
Theorem (Grace, vZ 2017).
For every binary frame template , one of the fol-
lowing holds:

•  is trivial;

•  reduces to C, X, CX, Y0, or Y1;

• For some k,  no simple, vertically k-connected
matroid of size ≥  conforms or coconforms to .

X

Z Y1 Y0 C

unit

columns

columns from Λ

rows

from Δ

0 A1

≤ 2 ones

per column
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Creating an order on templates

≤ 2nonzeroes per col



≤ 2nonzeroes per col ≤ 2nonzeroes per col



y y

1

≤ 2nonzeroes per col0 : X :

C/Y0 CX

Y1

≤ 2nonzeroes per col    0

1

0

· · · 1
1 1

1

1

1

1

1

1

1

10

0 0 0

0· · ·
· · ·
· · ·

· · ·
· · ·
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Application: 1-flowing matroids
Conjecture (Seymour 1981).
The excluded minors for 1-flowing matroids are U2,4,
AG(3,2), T11, T∗11.

Theorem (Grace, vZ 2017).
The template list for 1-flowing matroids is {0}.

Corollary (Grace, vZ 2017).
Subject to Template Covering Hypothesis, a coun-
terexample to Seymour’s 1-Flowing Conjecture has
low-order separation or small size.
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Approach

 = (, C, X, Y0, Y1, A1,Δ,Λ).

For class M: explicitly find full list of templates 
such that M() ⊆M.
To rule out a potential template:

• Show M() ⊆M(′) with ′ already in list; or

• Show the matroids conforming to the template
are not highly connected; or

• Find certificate placing it outside M.

É Typically, try to build an excluded minor for M
using .

Note: This procedure yields theorems, indepen-
dent of hypotheses!
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Tools
• Reduction operations

• Refined template:

-frame

X1

X0

0

columns from Λ[X0]

Y1 Y0 CZ

unit columns

0
 ∗

0 ∗

∗

∗

0

∗

rows from

Δ

(Extra conditions on Λ and Δ too).
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Slides, articles at
http://www.math.lsu.edu/~svanzwam/

Goodbye

http://www.math.lsu.edu/~svanzwam/

