Working with Templates

Stefan van Zwam Joint work with Kevin Grace

Department of Mathematics Louisiana State University

AMS Spring Southeastern Meeting, Nashville, TN April 14–15, 2018

Research supported by NSF grant 1500343

Part I Structure of minor-closed classes

Graph Minors Structure Theorem

Theorem (Robertson and Seymour 2003).

Let \mathcal{G} be proper minor-closed class of graphs. Each $G \in \mathcal{G}$ admits a *tree-decomposition*, whose parts are almost embeddable in a surface.

Consequences:

- No infinite antichains of graphs;
- G has finite set of excluded minors;
- Algorithms.

Matroid minors: the blueprint

Theorem (Seymour 1980).

Let M be a *regular* matroid. Then M can be constructed from graphic matroids, cographic matroids, and R_{10} through 1-, 2-, 3-sums.

Highly connected regular matroids are:

- Graphic matroids
- Cographic matroids

What can happen for other classes?

Matroid Minors Structure Theorem

Hypothesis (Geelen, Gerards, Whittle; rough idea).

 \mathcal{M} proper minor-closed class of \mathbb{F} -representable matroids. If $M \in \mathcal{M}$ has sufficiently high branch-width, then M has a tree-decomposition, the parts of which are *mild modifications* of

- representable over a subfield of F; or
- frame matroids; or
- duals of frame matroids.

Need: lots of definitions, 15 years of hard work by GGW.

Constructions

Frame matroids

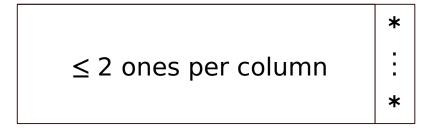
≤ 2 ones per column

Constructions

Even-cycle matroids (binary)

*	*	• • •	*
	≤ 2 ones	per column	

Constructions Grafts (binary)



Close under minors: duals of even-cut matroids (Guenin, Pivotto, Wollan).

Constructions

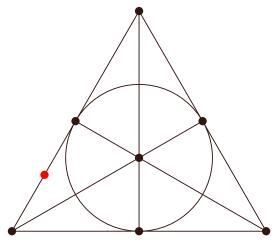
Almost representable over a subfield

A matroid is GF(q)-regular if it is representable over $GF(q^t)$ for all $t \ge 2$.

Theorem (Nelson, vZ 2015)

If M is highly connected and has a large PG(t,q) minor, then equivalent:

- M is GF(q)-regular;
- M is representable over $GF(q^2)$ and $GF(q^t)$ for some $t \ge 3$;
- M is a restriction of $\widehat{PG}(r-1,q)$ or $\overline{PG}(r-1,q)$.



Perturbations

Definition.

A rank-($\leq t$) perturbation of M = M[A] is the matroid M[A + P], where P has matrix rank $\leq t$.

	C
V	<i>−I</i>
A	W

Matroid view: $\leq t$ lifts and projections.

Matroid Minors Structure Theorem

Hypothesis (Geelen, Gerards, Whittle 2015).

Let \mathcal{M} be proper minor-closed class of matroids representable over GF(q). There exist k, t, l such that each vertically k-connected $M \in \mathcal{M}$ of size $\geq l$ is

- rank-($\leq t$) perturbation of frame matroid; or
- dual of rank-(≤ t) perturbation of frame matroid;
 or
- rank-($\leq t$) perturbation of matroid representable over a subfield.

Application: Linear Error-correcting Codes

- Binary linear code C is k-dimensional subspace of $GF(2)^n$.
- Notation: [n, k, d] linear code.

Asymptotically good codes

- Family $C_1, C_2, ...$ of linear codes with parameters $[n_i, k_i, d_i]$ is asymptotically good if, for some $\varepsilon > 0$:
 - (i) Growing size: $n_i \rightarrow \infty$ as $i \rightarrow \infty$
 - (ii) Constant rate: $k_i/n_i \ge \varepsilon$
- (iii) Growing minimum distance: $d_i/n_i \ge \varepsilon$

Theorem. Asymptotically good codes exist.

Asymptotically good codes: structure?

Operations on a code:

- **Puncturing:** $C \setminus i$, remove *i*th coordinate from each word
- **Shortening:** C/i, take $\{c \in C : c_i = 0\}$, then remove ith coordinate.

Theorem (Nelson, vZ 2015). Let \mathcal{M} be a class of binary linear codes closed under puncturing, shortening. Assuming Hypothesis, if \mathcal{M} contains an asymptotically good sequence, then \mathcal{M} contains *all* codes.

Part II A Speed Bump

Trouble

Theorem? (Geelen, Gerards, Whittle 2015).

Let \mathcal{M} be proper minor-closed class of matroids representable over GF(q). There exist k, t, l such that each vertically k-connected $M \in \mathcal{M}$ of size $\geq l$ is

- rank-($\leq t$) perturbation of frame matroid; or
- dual of rank-(≤ t) perturbation of frame matroid;
 or
- rank-(≤ t) perturbation of matroid represented over a subfield.

A counterexample

Let \mathcal{D} be class of *dyadic* matroids (i.e. representable over GF(3) and GF(5)).

Theorem (Grace, vZ 2017+).

For each k, t, l there exists a vertically k-connected dyadic matroid M on $\geq l$ elements, such that **NO** rank-($\leq t$) perturbation is a represented frame matroid or the dual of a represented frame matroid.

Consolation:

- Vertical k-connectivity and cographic don't mix;
- Most results saved by going to cyclic kconnectivity when "almost dual of frame";
- Everything should hold when the word "vertically" is struck out.

Matroid Minors Structure Theorem

Hypothesis (Geelen, Gerards, Whittle 2015).

Let \mathcal{M} be proper minor-closed class of matroids representable over GF(q). There exist k, t, l such that each k-connected $M \in \mathcal{M}$ of size $\geq l$ is

- rank-($\leq t$) perturbation of frame matroid; or
- dual of rank-(≤ t) perturbation of frame matroid;
 or
- rank-($\leq t$) perturbation of matroid representable over a subfield.

Part III More detail: templates

Frame templates

Definition.

$$\Phi = (\Gamma, C, X, Y_0, Y_1, A_1, \Delta, \Lambda).$$

		Z	$Y_1 Y_0 C$
Χ	columns from Λ	0	A_1
	≤ 2 ones per column	unit columns	rows from Δ

Definition.

 $\mathcal{M}(\Phi)$ is set of matroids *conforming to* template Φ .

Frame Template Hypothesis

Hypothesis (Geelen, Gerards, Whittle 2015)

 \mathcal{M} minor-closed class of GF(q)-representable matroids, m integer. $\exists k, \Phi_1, \ldots, \Phi_s, \Psi_1, \ldots, \Psi_t$ s.t.

- $\forall i : \mathcal{M}(\Phi_i) \subseteq \mathcal{M};$
- $\forall j : \mathcal{M}^*(\Psi_j) \subseteq \mathcal{M};$
- If $M \in \mathcal{M}$ is simple, k-connected, $\geq 2k$ elements, no PG(m, p)-minor, then
 - $ightharpoonup M \in \mathcal{M}(\Phi_1) \cup \cdots \cup \mathcal{M}(\Phi_s)$ or
 - $M^* \in \mathcal{M}(\Psi_1) \cup \cdots \cup \mathcal{M}(\Psi_s).$

Refine connectivity:

- Vertically k-connected: M has large $M(K_n)$ minor;
- Cyclically k-connected: M has large $M^*(K_n)$ minor.

Creating an order on templates

Theorem (Grace, vZ 2017).

For every binary frame template Φ , one of the following holds:

- Φ is trivial;
- Φ reduces to Φ_C , Φ_X , Φ_{CX} , Φ_{Y_0} , or Φ_{Y_1} ;
- For some k, l no simple, vertically k-connected matroid of size $\geq l$ conforms or coconforms to Φ .

_		Z	$Y_1 Y_0 C$
X	columns from Λ	0	A_1
	≤ 2 ones per column	unit columns	rows from Δ

Creating an order on templates

 Φ_0 :

 \leq 2nonzeroes per col

 Φ_X : \leq 2nonzeroes per col

 Φ_C/Φ_{Y_0}

≤ 2nonzeroes per col

 Φ_{CX}

<u>x</u>

≤ 2nonzeroes per col

X

<u>y</u>

1

 Φ_{Y_1}

≤ 2nonzeroes per col

Ι

0

Application: 1-flowing matroids

Conjecture (Seymour 1981).

The excluded minors for 1-flowing matroids are $U_{2,4}$, AG(3, 2), T_{11} , T_{11}^* .

Theorem (Grace, vZ 2017).

The template list for 1-flowing matroids is $\{\Phi_0\}$.

Corollary (Grace, vZ 2017).

Subject to Template Covering Hypothesis, a counterexample to Seymour's 1-Flowing Conjecture has low-order separation or small size.

Approach

$$\Phi = (\Gamma, C, X, Y_0, Y_1, A_1, \Delta, \Lambda).$$

For class \mathcal{M} : explicitly find full list of templates Φ such that $\mathcal{M}(\Phi) \subseteq \mathcal{M}$.

To rule out a potential template:

- Show $\mathcal{M}(\Phi) \subseteq \mathcal{M}(\Phi')$ with Φ' already in list; or
- Show the matroids conforming to the template are not highly connected; or
- Find certificate placing it outside \mathcal{M} .
 - ▶ Typically, try to build an excluded minor for \mathcal{M} using Φ .

Note: This procedure yields theorems, independent of hypotheses!

Tools

- Reduction operations
- Refined template:

		Z	Y	1	Y_0	C
<i>X</i> ₁	0	0	I	*	*	0
X_0	columns from $\Lambda[X_0]$	U	0	*	*	*
	Γ-frame	unit columns	ro	WS	fro	m

(Extra conditions on Λ and Δ too).

Slides, articles at http://www.math.lsu.edu/~svanzwam/

Goodbye